Experimental Investigations of Monomethyl and Dimethyl Fumarate in an Astrocyte-Microglia Co-Culture Model of Inflammation

Corvace F.a· Faustmann T.J.b· Heckers S.a· Faustmann P.M.a· Ismail F.S.c

Author affiliations

aDepartment of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
bDepartment of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
cDepartment of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply

Start free trial

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Research Article

Received: May 20, 2022
Accepted: December 28, 2022
Published online: February 01, 2023

Number of Print Pages: 11
Number of Figures: 5
Number of Tables: 0

ISSN: 0031-7012 (Print)
eISSN: 1423-0313 (Online)

For additional information: https://www.karger.com/PHA

Abstract

Introduction: Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the central nervous system. Dimethyl fumarate (DMF) and monomethyl fumarate (MMF) belong to the disease-modifying drugs in treatment of MS. There is evidence that astrocytes and microglia are involved in MS pathology, but few studies are available about MMF and DMF effects on astrocytes and microglia. The aim of this study was to investigate the effects of MMF and DMF on microglial activation and morphology as well as potential effects on glial viability, Cx43, and AQP4 expressions in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. Methods: Primary rat glial co-cultures of astrocytes containing 5% (M5, mimicking “physiological” conditions) or 30% (M30, mimicking “pathological, inflammatory” conditions) of microglia were treated with different concentrations of MMF (0.1, 0.5, and 2 μg/mL) or DMF (1.5, 5, and 15 μM) for 24 h. Viability, proliferation, and cytotoxicity of glial cells were examined using MTT assay. Immunocytochemistry was performed to analyze the microglial phenotypes. Connexin 43 (Cx43) and aquaporin 4 (AQP4) expressions were quantified by immunoblot analysis. Results: Treatment with different concentrations of MMF or DMF for 24 h did not change the glial cell viability in M5 and M30 co-cultures. Microglial phenotypes were not altered by DMF under physiological M5 conditions, but treatment with higher concentration of DMF (15 μM) induced microglial activation under inflammatory M30 conditions. Incubation with different concentrations of MMF had no effects on microglial phenotypes. The Cx43 expression in M5 and M30 co-cultures was not changed significantly by immunoblot analysis after incubation with different concentrations of DMF or MMF for 24 h. The AQP4 expression was significantly increased in M5 co-cultures after incubation with 5 μm DMF. Under the other conditions, AQP4 expression was not affected by DMF or MMF. Discussion: In different set-ups of the astrocyte-microglia co-culture model of inflammation, MMF has not shown significant effects. DMF had only limited effects on microglia phenotypes and AQP4 expression. In summary, mechanisms of action of fumarates probably do not involve direct effects on microglia phenotypes as well as Cx43 and AQP4 expression.

© 2023 S. Karger AG, Basel

References Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Author correction: multiple sclerosisErratum in. Nat Rev Dis Primersnat Rev Dis Primers. 2018 Nov 22;44(1):4349. De Kleijn KMA, Martens GJM. Molecular effects of FDA-approved multiple sclerosis drugs on glial cells and neurons of the central nervous system. Int J Mol Sci. 2020;21(12):4229. Brück J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K. A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol. 2018;27(6):611–24. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140(7):1900–13. Faustmann PM, Haase CG, Romberg S, Hinkerohe D, Szlachta D, Smikalla D, et al. Microglia activation influences dye coupling and Cx43 expression of the astrocytic network. Glia. 2003;42(2):101–8. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91(2):461–553. Ismail FS, Corvace F, Faustmann PM, Faustmann TJ. Pharmacological investigations in glia culture model of inflammation. Front Cel Neurosci. 2021;15:805755. Hinkerohe D, Smikalla D, Haghikia A, Heupel K, Haase CG, Dermietzel R, et al. Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory coculture model. Glia. 2005;52(2):85–97. Dermietzel R, Hertberg EL, Kessler JA, Spray DC. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci. 1991;11(5):1421–32. Brand-Schieber E, Werner P, Iacobas DA, Iacobas S, Beelitz M, Lowery SL, et al. Connexin43, the major gap junction protein of astrocytes, is down-regulated in inflamed white matter in an animal model of multiple sclerosis. J Neurosci Res. 2005;80(6):798–808. Masaki K, Suzuki SO, Matsushita T, Matsuoka T, Imamura S, Yamasaki R, et al. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. PLoS One. 2013;8:e72919. Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull. 2018;136:118–29. Aoki-Yoshino K, Uchihara T, Duyckaerts C, Nakamura A, Hauw JJ, Wakayama Y. Enhanced expression of aquaporin 4 in human brain with inflammatory diseases. Acta Neuropathol. 2005;110(3):281–8. Matsuoka T, Suzuki SO, Suenaga T, Iwaki T, Kira JI. Reappraisal of aquaporin-4 astrocytopathy in Asian neuromyelitis optica and multiple sclerosis patients. Brain Pathol. 2011;21(5):516–32. Peng H, Li H, Sheehy A, Cullen P, Allaire N, Scannevin RH. Dimethyl fumarate alters microglia phenotype and protects neurons against proinflammatory toxic microenvironments. J Neuroimmunol. 2016;299:35–44. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 2010;7:30. Galloway DA, Williams JB, Moore CS. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann Clin Transl Neurol. 2017;4(6):381–91. Parodi B, Rossi S, Morando S, Cordano C, Bragoni A, Motta C, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 2015;130(2):279–95. Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther. 2012;341(1):274–84. Schmidt MM, Dringen R. Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int. 2010;57(4):460–7. Brennan MS, Matos MF, Richter KE, Li B, Scannevin RH. The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes. Sci Rep. 2017;7:42054. Hinkerohe D, Smikalla D, Schoebel A, Haghikia A, Zoidl G, Haase CG, et al. Dexamethasone prevents LPS-induced microglial activation and astroglial impairment in an experimental bacterial meningitis co-culture model. Brain Res. 2010;1329:45–54. Hinkerohe D, Wolfkühler D, Haghikia A, Meier C, Faustmann PM, Schlegel U. Dexamethasone differentially regulates functional membrane properties in glioma cell lines and primary astrocytes in vitro. J Neurooncol. 2011;103(3):479–89. Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, et al. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia. 2014;55(1):184–92. Vollmar P, Haghikia A, Dermietzel R, Faustmann PM. Venlafaxine exhibits an anti-inflammatory effect in an inflammatory co-culture model. Int J Neuropsychopharmacol. 2008;11(1):111–7. Haghikia A, Ladage K, Hinkerohe D, Vollmar P, Heupel K, Dermietzel R, et al. Implications of antiinflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res. 2008;86:1781–8. Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, et al. Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol. 2011;162(2):491–507. Corvace F, Faustmann TJ, Faustmann PM, Ismail FS. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation. Eur J Pharmacol. 2022;915:174696. Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of lamotrigine and topiramate on glial properties in an astrocyte-microglia co-culture model of inflammation. Int J Neuropsychopharmacol. 2021;25(3):185–196. pyab080. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134(Pt 3):678–92. Lategan TW, Wang L, Sprague TN, Rousseau FS. Pharmacokinetics and bioavailability of monomethyl fumarate following a single oral dose of Bafiertam™ (monomethyl fumarate) or Tecfidera® (dimethyl fumarate). CNS Drugs. 2021;35(5):567–74. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. Wierinckx A, Brevé J, Mercier D, Schultzberg M, Drukarch B, Van Dam AM. Detoxication enzyme inducers modify cytokine production in rat mixed glial cells. J Neuroimmunol. 2005;166(1–2):132–43. Paraiso HC, Kuo PC, Curfman ET, Moon HJ, Sweazey RD, Yen JH, et al. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. J Neuroinflammation. 2018;15(1):100. Lin R, Cai J, Kostuk EW, Rosenwasser R, Iacovitti L. Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats. J Neuroinflammation. 2016;13(1):269. Reick C, Ellrichmann G, Thöne J, Scannevin RH, Saft C, Linker RA, et al. Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. Exp Neurol. 2014;257:50–6. Zhao X, Sun G, Zhang J, Ting SM, Gonzales N, Aronowski J. Dimethyl fumarate protects brain from damage produced by intracerebral hemorrhage by mechanism involving Nrf2. Stroke. 2015;46(7):1923–8. Liang R, Yong S, Huang X, Kong H, Hu G, Fan Y. Aquaporin-4 mediates the suppressive effect of lipopolysaccharide on hippocampal neurogenesis. Neuroimmunomodulation. 2016; 23(5–6):309–17. Article / Publication Details

First-Page Preview

Abstract of Research Article

Received: May 20, 2022
Accepted: December 28, 2022
Published online: February 01, 2023

Number of Print Pages: 11
Number of Figures: 5
Number of Tables: 0

ISSN: 0031-7012 (Print)
eISSN: 1423-0313 (Online)

For additional information: https://www.karger.com/PHA

Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif