Detection of antibodies against the huntingtin protein in human plasma

Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VM-Y (2018) Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem 145:489–503. https://doi.org/10.1111/jnc.14330

Article  CAS  Google Scholar 

Avrameas S, Ternynck T, Tsonis IA, Lymberi P (2007) Naturally occurring B-cell autoreactivity: a critical overview. J Autoimmun 29:213–218. https://doi.org/10.1016/j.jaut.2007.07.010

Article  CAS  Google Scholar 

Bartos A, Fialová L, Švarcová J (2018) Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s disease. J Alzheimers Dis 64:751–760. https://doi.org/10.3233/JAD-180039

Article  CAS  Google Scholar 

Bartos A, Fialová L, Svarcová J, Ripova D (2012) Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J Neuroimmunol 252:100–105. https://doi.org/10.1016/j.jneuroim.2012.08.001

Article  CAS  Google Scholar 

Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

Article  Google Scholar 

Bennett MJ, Huey-Tubman KE, Herr AB, West AP, Ross SA, Bjorkman PJ (2002) A linear lattice model for polyglutamine in CAG-expansion diseases. Proc Natl Acad Sci USA 99:11634–11639. https://doi.org/10.1073/pnas.182393899

Article  CAS  Google Scholar 

Besong-Agbo D, Wolf E, Jessen F, Oechsner M, Hametner E, Poewe W, Reindl M, Oertel WH, Noelker C, Bacher M, Dodel R (2013) Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80:169–175. https://doi.org/10.1212/WNL.0b013e31827b90d1

Article  CAS  Google Scholar 

Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Möller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877. https://doi.org/10.1084/jem.20080178

Article  CAS  Google Scholar 

van Blitterswijk M, Gulati S, Smoot E, Jaffa M, Maher N, Hyman BT, Ivinson AJ, Scherzer CR, Schoenfeld DA, Cudkowicz ME, Brown RH, Bosco DA (2011) Anti-superoxide dismutase antibodies are associated with survival in patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:430–438. https://doi.org/10.3109/17482968.2011.585163

Article  CAS  Google Scholar 

Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ (2017) Autoimmune antibody decline in Parkinson’s disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 12:44. https://doi.org/10.1186/s13024-017-0187-7

Article  CAS  Google Scholar 

Caron NS, Banos R, Yanick C, Aly AE, Byrne LM, Smith ED, Xie Y, Smith SEP, Potluri N, Findlay Black H, Casal L, Ko S, Cheung D, Kim H, Seong IS, Wild EJ, Song J-J, Hayden MR, Southwell AL (2021) Mutant huntingtin is cleared from the brain via active mechanisms in Huntington disease. J Neurosci 41:780–796. https://doi.org/10.1523/JNEUROSCI.1865-20.2020

Article  CAS  Google Scholar 

Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint-Pierre M, St-Amour I, Tolouei R, Skepper JN, Hauser RA, Mantovani D, Barker RA, Freeman TB (2014) Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 76:31–42. https://doi.org/10.1002/ana.24174

Article  CAS  Google Scholar 

Cohen IR (2007) Biomarkers, self-antigens and the immunological homunculus. J Autoimmun 29:246–249. https://doi.org/10.1016/j.jaut.2007.07.016

Article  CAS  Google Scholar 

Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36:364–373. https://doi.org/10.1016/j.it.2015.04.007

Article  CAS  Google Scholar 

Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548. https://doi.org/10.1016/S0092-8674(00)80513-9

Article  CAS  Google Scholar 

Dean L (2005) Blood and the cells it contains. NCBI Bookshelf 1:1–41

CAS  Google Scholar 

DeMarshall C, Sarkar A, Nagele EP, Goldwaser E, Godsey G, Acharya NK, Nagele RG (2015) Utility of autoantibodies as biomarkers for diagnosis and staging of neurodegenerative diseases. Int Rev Neurobiol 122:1–51. https://doi.org/10.1016/bs.irn.2015.05.005

Article  CAS  Google Scholar 

Egg R, Reindl M, Deisenhammer F, Linington C, Berger T (2001) Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler 7:285–289. https://doi.org/10.1177/135245850100700503

Article  CAS  Google Scholar 

Elkon K, Casali P (2008) Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 4:491–498. https://doi.org/10.1038/ncprheum0895

Article  CAS  Google Scholar 

Folke J, Rydbirk R, Løkkegaard A, Salvesen L, Hejl A-M, Starhof C, Bech S, Winge K, Christensen S, Pedersen LØ, Aznar S, Pakkenberg B, Brudek T (2019) Distinct autoimmune anti-α-synuclein antibody patterns in multiple system atrophy and Parkinson’s disease. Front Immunol 10:2253. https://doi.org/10.3389/fimmu.2019.02253

Article  CAS  Google Scholar 

Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175. https://doi.org/10.1038/5532

Article  CAS  Google Scholar 

Gruden MA, Sewell RDE, Yanamandra K, Davidova TV, Kucheryanu VG, Bocharov EV, Bocharova OA, Bocharova OR, Polyschuk VV, Sherstnev VV, Morozova-Roche LA (2011) Immunoprotection against toxic biomarkers is retained during Parkinson’s disease progression. J Neuroimmunol 233:221–227. https://doi.org/10.1016/j.jneuroim.2010.12.001

Article  CAS  Google Scholar 

Harding RJ, Deme JC, Hevler JF, Tamara S, Lemak A, Cantle JP, Szewczyk MM, Begeja N, Goss S, Zuo X, Loppnau P, Seitova A, Hutchinson A, Fan L, Truant R, Schapira M, Carroll JB, Heck AJR, Lea SM, Arrowsmith CH (2021) Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1. Commun Biol 4:1–16. https://doi.org/10.1038/s42003-021-02895-4

Article  CAS  Google Scholar 

Harding RJ, Loppnau P, Ackloo S, Lemak A, Hutchinson A, Hunt B, Holehouse AS, Ho JC, Fan L, Toledo-Sherman L, Seitova A, Arrowsmith CH (2019) Design and characterization of mutant and wildtype huntingtin proteins produced from a toolkit of scalable eukaryotic expression systems. J Biol Chem 294:6986–7001. https://doi.org/10.1074/jbc.RA118.007204

Article  CAS  Google Scholar 

Horvath I, Iashchishyn IA, Forsgren L, Morozova-Roche LA (2017) Immunochemical detection of α-synuclein autoantibodies in Parkinson’s disease: correlation between plasma and cerebrospinal fluid levels. ACS Chem Neurosci 8:1170–1176. https://doi.org/10.1021/acschemneuro.7b00063

Article  CAS  Google Scholar 

Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142. https://doi.org/10.1002/mds.870110204

Article  Google Scholar 

Jana NR, Zemskov EA, Wang Gh, Nukina N (2001) Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 10:1049–1059. https://doi.org/10.1093/hmg/10.10.1049

Article  CAS  Google Scholar 

Jeon I, Cicchetti F, Cisbani G, Lee S, Li E, Bae J, Lee N, Li L, Im W, Kim M, Kim HS, Oh S-H, Kim T-A, Ko JJ, Aubé B, Oueslati A, Kim YJ, Song J (2016) Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol 132:577–592. https://doi.org/10.1007/s00401-016-1582-9

Article  CAS  Google Scholar 

Klaver AC, Coffey MP, Bennett DA, Loeffler DA (2017) Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer’s disease subjects: an exploratory study. Transl Neurodegener 6:32. https://doi.org/10.1186/s40035-017-0100-x

Article  CAS  Google Scholar 

Krestova M, Ricny J, Bartos A (2018) Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer’s disease patients. J Neuroimmunol 322:1–8. https://doi.org/10.1016/j.jneuroim.2018.05.004

Article  CAS  Google Scholar 

Kronimus Y, Dodel R, Neumann S (2018) A Quantitative view on naturally occurring autoantibodies in neurodegenerative diseases. J Neurol Neuromed 3:4. https://doi.org/10.29245/2572.942X/2018/4.1189

Article  Google Scholar 

Landles C, Milton RE, Jean A, McLarnon S, McAteer SJ, Taxy BA, Osborne GF, Zhang C, Duan W, Howland D, Bates GP (2021) Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms. Brain Commun 3:fcaa231. https://doi.org/10.1093/braincomms/fcaa231

Article  CAS  Google Scholar 

Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE (2007) Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 18:1249–1264. https://doi.org/10.1016/j.jasms.2007.04.012

Article  CAS  Google Scholar 

Masnata M, Sciacca G, Maxan A, Bousset L, Denis HL, Lauruol F, David L, Saint-Pierre M, Kordower JH, Melki R, Alpaugh M, Cicchetti F (2019) Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01973-6

Article  Google Scholar 

Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG (2013) Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE 8:e60726. https://doi.org/10.1371/journal.pone.0060726

Article  CAS  Google Scholar 

Neff F, Wei X, Nölker C, Bacher M, Du Y, Dodel R (2008) Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 7:501–507. https://doi.org/10.1016/j.autrev.2008.04.010

Article  CAS  Google Scholar 

Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A (2019) The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00258

Article  Google Scholar 

Penney JB Jr, Vonsattel J-P, Macdonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692. https://doi.org/10.1002/ana.410410521

Article  Google Scholar 

Rosenmann H, Meiner Z, Geylis V, Abramsky O, Steinitz M (2006) Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neurosci Lett 410:90–93. https://doi.org/10.1016/j.neulet.2006.01.072

Article 

留言 (0)

沒有登入
gif