STAT proteins in cancer: orchestration of metabolism

Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

Article  CAS  Google Scholar 

O’Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121–S131 (2002).

Article  Google Scholar 

Yu, H. & Jove, R. The STATs of cancer—new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

Article  CAS  Google Scholar 

Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746 (2014).

Article  CAS  Google Scholar 

Guschin, D. et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 14, 1421–1429 (1995).

Article  CAS  Google Scholar 

Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

Article  CAS  Google Scholar 

Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).

Article  CAS  Google Scholar 

Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

Article  CAS  Google Scholar 

Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

Article  Google Scholar 

Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

Article  CAS  Google Scholar 

Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

Article  CAS  Google Scholar 

Jones, S. A. & Jenkins, B. J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773–789 (2018).

Article  CAS  Google Scholar 

Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).

Article  CAS  Google Scholar 

Erdogan, F. et al. JAK-STAT core cancer pathway: an integrative cancer interactome analysis. J. Cell Mol. Med. 26, 2049–2062 (2022).

Article  CAS  Google Scholar 

Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

Article  CAS  Google Scholar 

Ghoshal Gupta, S., Baumann, H. & Wetzler, M. Epigenetic regulation of signal transducer and activator of transcription 3 in acute myeloid leukemia. Leuk. Res. 32, 1005–1014 (2008).

Article  Google Scholar 

Wingelhofer, B. et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 32, 1713–1726 (2018).

Article  CAS  Google Scholar 

Maurer, B. et al. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica 105, 435–447 (2020).

Article  CAS  Google Scholar 

Schepers, H., Wierenga, A. T., Vellenga, E. & Schuringa, J. J. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 1, 13–22 (2012).

Google Scholar 

Subramaniam, D. et al. Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death Dis. 11, 149 (2020).

Article  CAS  Google Scholar 

Chou, P. H. et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J. Biomed. Sci. 29, 20 (2022).

Article  CAS  Google Scholar 

Wang, F., Zhang, L., Liu, J., Zhang, J. & Xu, G. Highly expressed STAT1 contributes to the suppression of stemness properties in human paclitaxel-resistant ovarian cancer cells. Aging 12, 11042–11060 (2020).

Article  CAS  Google Scholar 

Qadir, A. S. et al. CD95/Fas increases stemness in cancer cells by inducing a STAT1-dependent type I interferon response. Cell Rep. 18, 2373–2386 (2017).

Article  CAS  Google Scholar 

Liu, C. et al. STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin. Sci. 133, 645–663 (2019).

Article  CAS  Google Scholar 

Croker, B. A., Kiu, H. & Nicholson, S. E. SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol. 19, 414–422 (2008).

Article  CAS  Google Scholar 

Song, M. M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

Article  CAS  Google Scholar 

Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cell 19, 378–387 (2001).

Article  CAS  Google Scholar 

Rani, A. & Murphy, J. J. STAT5 in cancer and immunity. J. Interferon Cytokine Res. 36, 226–237 (2016).

Article  CAS  Google Scholar 

Inghirami, G. et al. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 4, 1131–1133 (2005).

Article  CAS  Google Scholar 

Weniger, M. A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006).

Article  CAS  Google Scholar 

Lennerz, J. K. et al. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma. Oncotarget 6, 29097–29110 (2015).

Article  Google Scholar 

Ogata, H. et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-β1 production. Oncogene 25, 2520–2530 (2006).

Article  CAS  Google Scholar 

He, B. et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc. Natl Acad. Sci. USA 100, 14133–14138 (2003).

Article  CAS  Google Scholar 

Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

Article  CAS  Google Scholar 

Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

Article  CAS  Google Scholar 

Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

Article  Google Scholar 

Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells. Trends Biochem. Sci. 41, 211–218 (2016).

Article  CAS  Google Scholar 

Evans, K. W. et al. Oxidative phosphorylation is a metabolic vulnerability in chemotherapy-resistant triple-negative breast cancer. Cancer Res. 81, 5572–5581 (2021).

Article  CAS  Google Scholar 

Chandra, D. & Singh, K. K. Genetic insights into OXPHOS defect and its role in cancer. Biochim. Biophys. Acta 1807, 620–625 (2011).

Article  CAS  Google Scholar 

Ashton, T. M., McKenna, W. G., Kunz-Schughart, L. A. & Higgins, G. S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018).

Article  CAS  Google Scholar 

Nayak, A. P., Kapur, A., Barroilhet, L. & Patankar, M. S. Oxidative phosphorylation: a target for novel therapeutic strategies against ovarian cancer. Cancers https://doi.org/10.3390/cancers10090337 (2018).

Article  Google Scholar 

Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).

Article  CAS  Google Scholar 

Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

Article  CAS  Google Scholar 

Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 e1567 (2021).

Article  CAS  Google Scholar 

Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5, 822–834 (2019).

Article  CAS  Google Scholar 

Poznanski, S. M. et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205–1220 e1205 (2021). This article shows that STAT3-mediated metabolic reprogramming of NK cells in the tumour microenvironment can augment their tumour cell-killing activity.

Article  CAS  Google Scholar 

Yao, C. H. et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife https://doi.org/10.7554/eLife.41351 (2019).

Article 

留言 (0)

沒有登入
gif