Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection

Keilich SR, et al. Vaccination mitigates influenza-induced muscular declines in aged mice. GeroScience. 2019;42:1593–608. https://doi.org/10.1007/s11357-020-00206-z.

Article  Google Scholar 

Centers for Disease, C. & Prevention. 2018–2019 flu season burden estimates. 2021. https://www.cdc.gov/flu/about/burden/2018-2019.html.

Loyd C, et al. Prevalence of hospital-associated disability in older adults: A meta-analysis. J Am Med Dir Assoc. 2020;21:455-461 e455. https://doi.org/10.1016/j.jamda.2019.09.015.

Article  Google Scholar 

Boyd CM, et al. Recovery of activities of daily living in older adults after hospitalization for acute medical illness. J Am Geriatr Soc. 2008;56:2171–9. https://doi.org/10.1111/j.1532-5415.2008.02023.x.

Article  Google Scholar 

Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352:1749–59. https://doi.org/10.1056/NEJMoa043951.

Article  Google Scholar 

Gozalo PL, Pop-Vicas A, Feng Z, Gravenstein S, Mor V. Effect of influenza on functional decline. J Am Geriatr Soc. 2012;60:1260–7. https://doi.org/10.1111/j.1532-5415.2012.04048.x.

Article  Google Scholar 

Kuiken T, Taubenberger JK. Pathology of human influenza revisited. Vaccine. 2008;26(Suppl 4):D59-66. https://doi.org/10.1016/j.vaccine.2008.07.025.

Article  Google Scholar 

McConeghy KW, et al. influenza illness and hip fracture hospitalizations in nursing home residents: are they related? J Gerontol A Biol Sci Med Sci. 2018;73:1638–42. https://doi.org/10.1093/gerona/glx200.

Article  Google Scholar 

Bartley JM, et al. Aging augments the impact of influenza respiratory tract infection on mobility impairments, muscle-localized inflammation, and muscle atrophy. Aging. 2016;8:620–35. https://doi.org/10.18632/aging.100882.

Article  Google Scholar 

Radigan KA, et al. Influenza A virus infection induces muscle wasting via IL-6 regulation of the E3 ubiquitin ligase atrogin-1. J Immunol. 2019;202:484–93. https://doi.org/10.4049/jimmunol.1701433.

Article  Google Scholar 

Keilich SR, et al. Vaccination mitigates influenza-induced muscular declines in aged mice. GeroScience. 2020;42:1593–608. https://doi.org/10.1007/s11357-020-00206-z.

Article  Google Scholar 

Gamboa ET, Eastwood AB, Hays AP, Maxwell J, Penn AS. Isolation of influenza virus from muscle in myoglobinuric polymyositis. Neurol. 1979;29:1323–35. https://doi.org/10.1212/wnl.29.10.1323.

Article  Google Scholar 

Farrell MK, Partin JC, Bove KE. Epidemic influenza myopathy in Cincinnati in 1977. J Pediatr. 1980;96:545–51. https://doi.org/10.1016/s0022-3476(80)80864-x.

Article  Google Scholar 

Kessler HA, Trenholme GM, Harris AA, Levin S. Acute myopathy associated with influenza A/Texas/1/77 infection. Isolation of virus from a muscle biopsy specimen. JAMA. 1980;243:461–2.

Article  Google Scholar 

Kessler HA, et al. Elevated creatine phosphokinase levels associated with influenza A/Texas/1/77 infection. Scand J Infect Dis. 1983;15:7–10. https://doi.org/10.3109/inf.1983.15.issue-1.02.

Article  Google Scholar 

Straight CR, et al. Influenza infection has fiber type-specific effects on cellular and molecular skeletal muscle function in aged mice. J Gerontol A Biol Sci Med Sci. 2020;75:2333–41. https://doi.org/10.1093/gerona/glaa136.

Article  Google Scholar 

Giordani L, et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol Cell. 2019;74:609-621.e606. https://doi.org/10.1016/j.molcel.2019.02.026.

Article  Google Scholar 

Runyan CE, et al. Impaired phagocytic function in CX3CR1(+) tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;19:e13180. https://doi.org/10.1111/acel.13180.

Article  Google Scholar 

Tidball JG, Flores I, Welc SS, Wehling-Henricks M, Ochi E. Aging of the immune system and impaired muscle regeneration: a failure of immunomodulation of adult myogenesis. Exp Gerontol. 2021;145:111200. https://doi.org/10.1016/j.exger.2020.111200.

Article  Google Scholar 

Zhang C, et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration. J Cachexia Sarcopenia Muscle. 2020;11:1291–305. https://doi.org/10.1002/jcsm.12584.

Article  Google Scholar 

Stearns-Reider KM, et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell. 2017;16:518–28. https://doi.org/10.1111/acel.12578.

Article  Google Scholar 

Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12:532–47. https://doi.org/10.1038/nri3233.

Article  Google Scholar 

Kuswanto W, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity. 2016;44:355–67. https://doi.org/10.1016/j.immuni.2016.01.009.

Article  Google Scholar 

Lefebvre JS, et al. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice: the aged environment impairs CD4 T-cell functions. Aging Cell. 2012;11:732–40. https://doi.org/10.1111/j.1474-9726.2012.00836.x.

Article  Google Scholar 

Peperzak V, et al. CD8<sup>+</sup> T cells produce the chemokine CXCL10 in response to CD27/CD70 costimulation to promote generation of the CD8<sup>+</sup> effector T cell pool. J Immunol. 2013;191:3025–36. https://doi.org/10.4049/jimmunol.1202222.

Article  Google Scholar 

Ukraintseva S, et al. Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev. 2021;194:111418. https://doi.org/10.1016/j.mad.2020.111418.

Article  Google Scholar 

McElhaney JE, et al. The immune response to influenza in older humans: beyond immune senescence. Immun Ageing 2020;17:10. https://doi.org/10.1186/s12979-020-00181-1.

Martínez-Baz I, et al. Chronic obstructive pulmonary disease and influenza vaccination effect in preventing outpatient and inpatient influenza cases. Sci Rep. 2022;12:4862. https://doi.org/10.1038/s41598-022-08952-0.

Article  Google Scholar 

Tumasian RA, et al. Skeletal muscle transcriptome in healthy aging. Nat Commun. 2021;12:2014. https://doi.org/10.1038/s41467-021-22168-2.

Article  Google Scholar 

Gumpenberger M, et al. Remodeling the skeletal muscle extracellular matrix in older age—effects of acute exercise stimuli on gene expression. Int J Mol Sci. 2020;21:7089. https://doi.org/10.3390/ijms21197089.

Article  Google Scholar 

Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop. 2016;3:15. https://doi.org/10.1186/s40634-016-0051-7.

Article  Google Scholar 

Gagnon KB, Delpire E. Sodium transporters in human health and disease. Front Physiol. 2020;11:588664. https://doi.org/10.3389/fphys.2020.588664.

Mijares A, Allen PD, Lopez JR. Senescence is associated with elevated intracellular resting [Ca(2 +)] in mice skeletal muscle fibers. An In Vivo Study Front Physiol. 2020;11:601189. https://doi.org/10.3389/fphys.2020.601189.

Thalacker-Mercer AE, Dell'Italia LJ, Cui X, Cross JM, Bamman MM. Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics. 2010;40:141–9. https://doi.org/10.1152/physiolgenomics.00151.2009.

Burzyn D, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155:1282–95. https://doi.org/10.1016/j.cell.2013.10.054.

Article  Google Scholar 

Cho J, Kuswanto W, Benoist C, Mathis D. T cell receptor specificity drives accumulation of a reparative population of regulatory T cells within acutely injured skeletal muscle. Proc Natl Acad Sci. 2019;116:26727–33. https://doi.org/10.1073/pnas.1914848116.

Article  Google Scholar 

Deyhle MR, Gier AM, Evans KC, et al. Skeletal muscle inflammation following repeated bouts of lengthening contractions in humans. Front Physiol. 2015;6:424. https://doi.org/10.3389/fphys.2015.00424.

Article  Google Scholar 

Deyhle MR, et al. CXCL10 increases in human skeletal muscle following damage but is not necessary for muscle regeneration. Physiol Rep. 2018;6:e13689. https://doi.org/10.14814/phy2.13689.

Article  Google Scholar 

Zhang J, et al. CD8 T Cells Are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1high macrophage infiltration. J Immunol. 2014;193:5149–60. https://doi.org/10.4049/jimmunol.1303486.

Kastenschmidt JM, Avetyan I, Villalta SA. in methods in molecular biology 43–56. New York: Springer; 2018.

Google Scholar 

Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinforma. 2022;38:2943–5. https://doi.org/10.1093/bioinformatics/btac166.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

Article  Google Scholar 

Jelley-Gibbs DM, et al. Persistent depots of influenza antigen fail to induce a cytotoxic CD8 T cell response. J Immunol. 2007;178:7563–70. https://doi.org/10.4049/jimmunol.178.12.7563.

Article  Google Scholar 

留言 (0)

沒有登入
gif