On a New Paradigm of the Development of Neurodegenerative Diseases by the Example of Alzheimer’s Disease and Parkinson’s Disease

Aliseichik, M.P., Andreeva, T.V., and Rogaev, E.I., Immunogenetic factors of neurodegenerative diseases: role of class HLA II, Biokhimiya, 2018, vol. 83, no. 9, pp. 1385–1398.

Google Scholar 

Emelin, A.Yu., Litvinenko, I.V., and Lobzin, V.Yu., Erroneous management of patients with Alzheimer’s disease: analysis of problems and pathways of their solution, Nevrol., Neiropsikhiatr., Psikhosom., 2019, vol. 11, no. 4, pp. 141–146.

Google Scholar 

Emelin, A.Yu., Lobzin, V.Yu., and Vorob’ev, S.V., Kognitivnye narusheniya: Ruk. dlya vrachei (Cognitive Disorders: Manual for Physicians), Moscow, 2019.

Krasakov, I.V., Litvinenko, I.V., Rodionov, G.G., et al., Assessment of intestinal microbiota in patients with Parkinson’s disease using the method of gas chromatography–mass spectrometry, Annaly Klin. Exp. Nevrol., 2018, vol. 12, no. 4, pp. 23–29.

Google Scholar 

Litvinenko, I.V., Emelin, A.Yu., Lobzin, V.Yu., et al., Amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments, Nevrol., Neiropsikhiatr., Psikhosom., 2019, vol. 11, no. 3, pp. 4–10.

Google Scholar 

Litvinenko, I.V., Krasakov, I.V., Bisaga, G.N., et al., Modern concept of pathogenesis of neurodegenerative diseases and therapeutic strategy, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2017, vol. 117, no. 6–2, pp. 3–10.

Litvinenko, I.V., Krasakov, I.V., and Trufanov, A.G., Cerebral disorders of iron metabolism as a basis of development and progression of neurodegenerative diseases, Vestn. Ros. VMA, 2018, no. S3, pp. 68–78.

Litvinenko, I.V., Lobzin, V.Yu., and Pushkarev, V.A., Role of infectious agents in the development of neurodegenerative diseases, Izv. Ros. VMA, 2021, vol. 40, no. 4, pp. 25–32.

Google Scholar 

Lobzin, V.Yu., Vascular-neurodegenerative cognitive disorders (pathogenesis, clinical manifestations, early and differential diagnostics), D. Sci. (Med.) Dissertation, St. Petersburg, 2016.

Lobzin, V.Yu., Kolmakova, K.A., and Emelin, A.Yu., Novel view of pathogenesis of Alzheimer’s disease: modern ideas of amyloid clearance, Obozrenie Psikhiatr. Med. Psikhol., 2018, no. 2, pp. 22–28.

Alenina, N. and Bader, M., ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models, Neurochem. Res., 2019, vol. 44, no. 6, pp. 1323–1329. https://doi.org/10.1007/s11064-018-2679-4

Article  CAS  Google Scholar 

Alvarez-Lafuente, R., De las Heras, V., and Bartolomè, M., Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection, Arch. Neurol., 2004, vol. 61, no. 10, pp. 1523–1527.https://doi.org/10.1001/archneur.61.10.1523

Ameres, M., Brandstetter, S., Toncheva, A.A., et al., Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19, J. Neurol., 2020, vol. 267, no. 12, pp. 3476–3478. https://doi.org/10.1007/s00415-020-10050-y

Article  CAS  Google Scholar 

Atwood, C.S., Bowen, R.L., Smith, M.A., and Perry, G., Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply, Brain Res. Rev., 2003, vol. 43, no. 1, pp. 164–178. https://doi.org/10.1016/s0165-0173(03)00206-6

Article  CAS  Google Scholar 

Baig, A.M., Khaleeq, A., Ali, U., et al., Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms, ACS Chem. Neurosci., 2020, vol. 11, no. 7, pp. 995–998. https://doi.org/10.1021/acschemneuro.0c00122

Article  CAS  Google Scholar 

Bender, S.J., Phillips, J.M., Scott, E.P., and Weiss, S.R., Murine coronavirus receptors are differentially expressed in the central nervous system and play virus strain-dependent roles in neuronal spread, J. Virol., 2010, vol. 84, no. 21, pp. 11030–11044. https://doi.org/10.1128/jvi.02688-09

Article  CAS  Google Scholar 

Benedet, A.L., Milà-Alomà, M., Vrillon, A., et al., Alzheimer’s and families (ALFA) study, and BioCogBank Paris Lariboisiére cohort. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum, J.A.M.A. Neurol., 2021, vol. 78, no. 12, pp. 1471–1483. https://doi.org/10.1001/jamaneurol.2021.3671

Article  Google Scholar 

Block, M.L., Zecca, L., and Hong, J.S., Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nat. Rev. Neurosci., 2007, vol. 8, no. 1, pp. 57–69. https://doi.org/10.1038/nrn2038

Article  CAS  Google Scholar 

Bourgade, K., Le Page, A.Y., Bocti, C., et al., Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model, J. Alzheimers Dis., 2016, vol. 50, no. 4, pp. 1227–1241. https://doi.org/10.3233/JAD-150652

Article  CAS  Google Scholar 

Castellani, R.J., Siedlak, S.L., Perry, G., et al., Sequestration of iron by Lewy bodies in Parkinson’s disease, Acta Neuropathol., 2000, vol. 100, no. 2, pp. 111–114. https://doi.org/10.1007/s004010050001

Article  CAS  Google Scholar 

Cheever, F.S., Daniels, J.B., Pappenheimer, A.M., et al., A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin, J. Exp. Med., 1949, vol. 90, no. 3, pp. 181–210. https://doi.org/10.1084/jem.90.3.181

Article  CAS  Google Scholar 

Chen, Z., Mi, L., Xu, J., et al., Function of HAb18G/ CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus, J. Infect. Dis., 2005, vol. 191, no. 5, pp. 755–760. https://doi.org/10.1086/427811

Article  CAS  Google Scholar 

Connor, J.R., Menzies, S.L., St Martin, S.M., et al., Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains, J. Neurosci. Res., 1990, vol. 27, no. 4, pp. 595–611. https://doi.org/10.1002/jnr.490270421

Article  CAS  Google Scholar 

Di Monte, D.A., Schipper, H.M., Hetts, S., et al., Ironmediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures, Glia, 1995, vol. 15, no. 2, pp. 203–206. https://doi.org/10.1002/glia.440150213

Article  CAS  Google Scholar 

Eimer, W.A. and Vijaya Kumar, D.K., Navalpur Shanmugam, N.K., et al., Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpes viridae to protect against brain infection, Neuron, 2018, vol. 99, no. 1, pp. 56–63. https://doi.org/10.1016/j.neuron.2018.06.030

Article  CAS  Google Scholar 

Farrall, A.J. and Wardlaw, J.M., Blood-brain barrier: ageing and microvascular disease—systematic review and meta-analysis, Neurobiol. Aging, 2009, vol. 30, no. 3, pp. 337–352. https://doi.org/10.1016/j.neurobiolaging.2007.07.015

Article  CAS  Google Scholar 

Faucheux, B.A., Martin, M.E., Beaumont, C., et al., Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease, J. Neurochem., 2002, vol. 83, no. 2, pp. 320–330. https://doi.org/10.1046/j.1471-4159.2002.01118.x

Article  CAS  Google Scholar 

Finsterer, J. and Stollberger, C., Update on the neurology of COVID-19, J. Med. Virol., 2020, vol. 92, no. 11, pp. 2316–2318. https://doi.org/10.1002/jmv.26000

Article  CAS  Google Scholar 

Gosztyla, M.L., Brothers, H.M., and Robinson, S.R., Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence, J. Alzheimers Dis., 2018, vol. 62, no. 4, pp. 1495–1506. https://doi.org/10.3233/JAD-171133

Article  CAS  Google Scholar 

Hawkes, C.H., Del Tredici, K., and Braak, H., Parkinson’s disease: a dual-hit hypothesis, Neuropathol. Appl. Neurobiol., 2007, vol. 33, no. 6, pp. 599–614. https://doi.org/10.1111/j.1365-2990.2007.00874.x

Article  CAS  Google Scholar 

Heurich, A., Hofmann-Winkler, H., Gierer, S., et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein, J. Virol., 2014, vol. 88, no. 2, pp. 1293–1307. https://doi.org/10.1128/jvi.02202-13

Article  Google Scholar 

Itzhaki, R.F., Golde, T.E., Heneka, M.T., et al., Do infections have a role in the pathogenesis of Alzheimer disease?, Nat. Rev. Neurol., 2020, vol. 16, no. 4, pp. 193–197. https://doi.org/10.1038/s41582-020-0323-9

Article  Google Scholar 

Jang, H., Boltz, D., Sturm-Ramirez, K., et al., Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration, Proc. Nat. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, pp. 14063–14068. https://doi.org/10.1073/pnas.0900096106

Article  Google Scholar 

Kumar, A., Pareek, V., Prasoon, P., et al., Possible routes of SARS-CoV-2 invasion in brain: in context of neurological symptoms in COVID-19 patients, J. Neurosci. Res., 2020, vol. 98, no. 12, pp. 2376–2383. https://doi.org/10.1002/jnr.24717

Article  CAS  Google Scholar 

Kuo, C.L., Pilling, L.C., Atkins, J.L., et al., APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort, J. Gerontol. A Biol. Sci. Med. Sci., 2020, vol. 75, no. 11, pp. 2231–2232. https://doi.org/10.1093/gerona/glaa131

Article  CAS  Google Scholar 

Labrie, V. and Brundin, P., Alpha-synuclein to the rescue: immune cell recruitment by alpha-synuclein during gastrointestinal infection, J. Innate Immunol., 2017, vol. 9, no. 5, pp. 437–440. https://doi.org/10.1159/000479653

Article  CAS  Google Scholar 

Lee, P., Peng, H., Gelbart, T., et al., The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes, Proc. Nat. Acad. Sci. U.S.A., 2004, vol. 101, no. 25, pp. 9263–9265. https://doi.org/10.1073/pnas.0403108101

Article  CAS  Google Scholar 

Lewandowski, G., Zimmerman, M.N., Denk, L.L., et al., Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice, Arch. Virol., 2002, vol. 147, pp. 167–179. https://doi.org/10.1007/s705-002-8309-9

Article  CAS  Google Scholar 

Lindblom, N., Lindquist, L., Westman, J., et al., Potential virus involvement in Alzheimer’s disease: results from a phase IIa trial evaluating Apovir, an antiviral drug combination, J. Alzheimers Dis. Rep., 2021, vol. 5, no. 1, pp. 413–431. https://doi.org/10.3233/ADR-210301

Article  Google Scholar 

Lindestam Arlehamn, C.S., Dhanwani, R., Pham, J., et al., α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease, Nat. Commun., 2020, vol. 11, no. 1, p. 1875. https://doi.org/10.1038/s41467-020-15626-w

Article  CAS  Google Scholar 

Luna, S., Cameron, D.J., and Ethell, D.W., Amyloid-β and APP deficiencies cause severe cerebrovascular defects: important work for an old villain, PLoS One, 2013, vol. 8, no. 9. e75052. https://doi.org/10.1371/journal.pone.0075052

Article  CAS  Google Scholar 

Lustig, R.H., Ultraprocessed food: addictive, toxic, and ready for regulation, Nutrients, 2020, vol. 12, p. 3401. https://doi.org/10.3390/nu12113401

Article  CAS  Google Scholar 

Maass, F., Michalke, B., Willkommen, D., et al., Cerebrospinal fluid iron–ferritin ratio as a potential progression marker for Parkinson’s disease, Mov. Disord., 2021, vol. 36, no. 12, pp. 2967–2969. https://doi.org/10.1002/mds.28790

Article  CAS  Google Scholar 

MacMahon Copas, A.N., McComish, S.F., Fletcher, J.M., et al., The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes?, Front. Neurol., 2021, vol. 12, p. 666737. https://doi.org/10.3389/fneur.2021.666737

Article  Google Scholar 

Malpetti, M., Passamonti, L., Jones, P.S., et al., Neuroinflammation predicts disease progression in progressive supranuclear palsy, J. Neurol. Neurosurg. Psychiatr., 2021, vol. 92, pp. 769–775.

Article  Google Scholar 

Mao, L., Jin, H., Wang, M., et al., Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China, J.A.M.A. Neurol., 2020, vol. 77, no. 6, pp. 683–690. https://doi.org/10.1001/jamaneurol.2020.1127

Article  Google Scholar 

McGeer, P.L., Itagaki, S., Boyes, B.E., et al., Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains, Neurology, 1988, vol. 38, pp. 1285–1291. https://doi.org/10.1212/WNL.38.8.1285

Article  CAS  Google Scholar 

Miyake, Y., Tanaka, K., Fukushima, W., et al., Dietary intake of meta

留言 (0)

沒有登入
gif