Aliseichik, M.P., Andreeva, T.V., and Rogaev, E.I., Immunogenetic factors of neurodegenerative diseases: role of class HLA II, Biokhimiya, 2018, vol. 83, no. 9, pp. 1385–1398.
Emelin, A.Yu., Litvinenko, I.V., and Lobzin, V.Yu., Erroneous management of patients with Alzheimer’s disease: analysis of problems and pathways of their solution, Nevrol., Neiropsikhiatr., Psikhosom., 2019, vol. 11, no. 4, pp. 141–146.
Emelin, A.Yu., Lobzin, V.Yu., and Vorob’ev, S.V., Kognitivnye narusheniya: Ruk. dlya vrachei (Cognitive Disorders: Manual for Physicians), Moscow, 2019.
Krasakov, I.V., Litvinenko, I.V., Rodionov, G.G., et al., Assessment of intestinal microbiota in patients with Parkinson’s disease using the method of gas chromatography–mass spectrometry, Annaly Klin. Exp. Nevrol., 2018, vol. 12, no. 4, pp. 23–29.
Litvinenko, I.V., Emelin, A.Yu., Lobzin, V.Yu., et al., Amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments, Nevrol., Neiropsikhiatr., Psikhosom., 2019, vol. 11, no. 3, pp. 4–10.
Litvinenko, I.V., Krasakov, I.V., Bisaga, G.N., et al., Modern concept of pathogenesis of neurodegenerative diseases and therapeutic strategy, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2017, vol. 117, no. 6–2, pp. 3–10.
Litvinenko, I.V., Krasakov, I.V., and Trufanov, A.G., Cerebral disorders of iron metabolism as a basis of development and progression of neurodegenerative diseases, Vestn. Ros. VMA, 2018, no. S3, pp. 68–78.
Litvinenko, I.V., Lobzin, V.Yu., and Pushkarev, V.A., Role of infectious agents in the development of neurodegenerative diseases, Izv. Ros. VMA, 2021, vol. 40, no. 4, pp. 25–32.
Lobzin, V.Yu., Vascular-neurodegenerative cognitive disorders (pathogenesis, clinical manifestations, early and differential diagnostics), D. Sci. (Med.) Dissertation, St. Petersburg, 2016.
Lobzin, V.Yu., Kolmakova, K.A., and Emelin, A.Yu., Novel view of pathogenesis of Alzheimer’s disease: modern ideas of amyloid clearance, Obozrenie Psikhiatr. Med. Psikhol., 2018, no. 2, pp. 22–28.
Alenina, N. and Bader, M., ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models, Neurochem. Res., 2019, vol. 44, no. 6, pp. 1323–1329. https://doi.org/10.1007/s11064-018-2679-4
Alvarez-Lafuente, R., De las Heras, V., and Bartolomè, M., Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection, Arch. Neurol., 2004, vol. 61, no. 10, pp. 1523–1527.https://doi.org/10.1001/archneur.61.10.1523
Ameres, M., Brandstetter, S., Toncheva, A.A., et al., Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19, J. Neurol., 2020, vol. 267, no. 12, pp. 3476–3478. https://doi.org/10.1007/s00415-020-10050-y
Atwood, C.S., Bowen, R.L., Smith, M.A., and Perry, G., Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply, Brain Res. Rev., 2003, vol. 43, no. 1, pp. 164–178. https://doi.org/10.1016/s0165-0173(03)00206-6
Baig, A.M., Khaleeq, A., Ali, U., et al., Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms, ACS Chem. Neurosci., 2020, vol. 11, no. 7, pp. 995–998. https://doi.org/10.1021/acschemneuro.0c00122
Bender, S.J., Phillips, J.M., Scott, E.P., and Weiss, S.R., Murine coronavirus receptors are differentially expressed in the central nervous system and play virus strain-dependent roles in neuronal spread, J. Virol., 2010, vol. 84, no. 21, pp. 11030–11044. https://doi.org/10.1128/jvi.02688-09
Benedet, A.L., Milà-Alomà, M., Vrillon, A., et al., Alzheimer’s and families (ALFA) study, and BioCogBank Paris Lariboisiére cohort. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum, J.A.M.A. Neurol., 2021, vol. 78, no. 12, pp. 1471–1483. https://doi.org/10.1001/jamaneurol.2021.3671
Block, M.L., Zecca, L., and Hong, J.S., Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nat. Rev. Neurosci., 2007, vol. 8, no. 1, pp. 57–69. https://doi.org/10.1038/nrn2038
Bourgade, K., Le Page, A.Y., Bocti, C., et al., Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model, J. Alzheimers Dis., 2016, vol. 50, no. 4, pp. 1227–1241. https://doi.org/10.3233/JAD-150652
Castellani, R.J., Siedlak, S.L., Perry, G., et al., Sequestration of iron by Lewy bodies in Parkinson’s disease, Acta Neuropathol., 2000, vol. 100, no. 2, pp. 111–114. https://doi.org/10.1007/s004010050001
Cheever, F.S., Daniels, J.B., Pappenheimer, A.M., et al., A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin, J. Exp. Med., 1949, vol. 90, no. 3, pp. 181–210. https://doi.org/10.1084/jem.90.3.181
Chen, Z., Mi, L., Xu, J., et al., Function of HAb18G/ CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus, J. Infect. Dis., 2005, vol. 191, no. 5, pp. 755–760. https://doi.org/10.1086/427811
Connor, J.R., Menzies, S.L., St Martin, S.M., et al., Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains, J. Neurosci. Res., 1990, vol. 27, no. 4, pp. 595–611. https://doi.org/10.1002/jnr.490270421
Di Monte, D.A., Schipper, H.M., Hetts, S., et al., Ironmediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures, Glia, 1995, vol. 15, no. 2, pp. 203–206. https://doi.org/10.1002/glia.440150213
Eimer, W.A. and Vijaya Kumar, D.K., Navalpur Shanmugam, N.K., et al., Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpes viridae to protect against brain infection, Neuron, 2018, vol. 99, no. 1, pp. 56–63. https://doi.org/10.1016/j.neuron.2018.06.030
Farrall, A.J. and Wardlaw, J.M., Blood-brain barrier: ageing and microvascular disease—systematic review and meta-analysis, Neurobiol. Aging, 2009, vol. 30, no. 3, pp. 337–352. https://doi.org/10.1016/j.neurobiolaging.2007.07.015
Faucheux, B.A., Martin, M.E., Beaumont, C., et al., Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease, J. Neurochem., 2002, vol. 83, no. 2, pp. 320–330. https://doi.org/10.1046/j.1471-4159.2002.01118.x
Finsterer, J. and Stollberger, C., Update on the neurology of COVID-19, J. Med. Virol., 2020, vol. 92, no. 11, pp. 2316–2318. https://doi.org/10.1002/jmv.26000
Gosztyla, M.L., Brothers, H.M., and Robinson, S.R., Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence, J. Alzheimers Dis., 2018, vol. 62, no. 4, pp. 1495–1506. https://doi.org/10.3233/JAD-171133
Hawkes, C.H., Del Tredici, K., and Braak, H., Parkinson’s disease: a dual-hit hypothesis, Neuropathol. Appl. Neurobiol., 2007, vol. 33, no. 6, pp. 599–614. https://doi.org/10.1111/j.1365-2990.2007.00874.x
Heurich, A., Hofmann-Winkler, H., Gierer, S., et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein, J. Virol., 2014, vol. 88, no. 2, pp. 1293–1307. https://doi.org/10.1128/jvi.02202-13
Itzhaki, R.F., Golde, T.E., Heneka, M.T., et al., Do infections have a role in the pathogenesis of Alzheimer disease?, Nat. Rev. Neurol., 2020, vol. 16, no. 4, pp. 193–197. https://doi.org/10.1038/s41582-020-0323-9
Jang, H., Boltz, D., Sturm-Ramirez, K., et al., Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration, Proc. Nat. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, pp. 14063–14068. https://doi.org/10.1073/pnas.0900096106
Kumar, A., Pareek, V., Prasoon, P., et al., Possible routes of SARS-CoV-2 invasion in brain: in context of neurological symptoms in COVID-19 patients, J. Neurosci. Res., 2020, vol. 98, no. 12, pp. 2376–2383. https://doi.org/10.1002/jnr.24717
Kuo, C.L., Pilling, L.C., Atkins, J.L., et al., APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort, J. Gerontol. A Biol. Sci. Med. Sci., 2020, vol. 75, no. 11, pp. 2231–2232. https://doi.org/10.1093/gerona/glaa131
Labrie, V. and Brundin, P., Alpha-synuclein to the rescue: immune cell recruitment by alpha-synuclein during gastrointestinal infection, J. Innate Immunol., 2017, vol. 9, no. 5, pp. 437–440. https://doi.org/10.1159/000479653
Lee, P., Peng, H., Gelbart, T., et al., The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes, Proc. Nat. Acad. Sci. U.S.A., 2004, vol. 101, no. 25, pp. 9263–9265. https://doi.org/10.1073/pnas.0403108101
Lewandowski, G., Zimmerman, M.N., Denk, L.L., et al., Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice, Arch. Virol., 2002, vol. 147, pp. 167–179. https://doi.org/10.1007/s705-002-8309-9
Lindblom, N., Lindquist, L., Westman, J., et al., Potential virus involvement in Alzheimer’s disease: results from a phase IIa trial evaluating Apovir, an antiviral drug combination, J. Alzheimers Dis. Rep., 2021, vol. 5, no. 1, pp. 413–431. https://doi.org/10.3233/ADR-210301
Lindestam Arlehamn, C.S., Dhanwani, R., Pham, J., et al., α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease, Nat. Commun., 2020, vol. 11, no. 1, p. 1875. https://doi.org/10.1038/s41467-020-15626-w
Luna, S., Cameron, D.J., and Ethell, D.W., Amyloid-β and APP deficiencies cause severe cerebrovascular defects: important work for an old villain, PLoS One, 2013, vol. 8, no. 9. e75052. https://doi.org/10.1371/journal.pone.0075052
Lustig, R.H., Ultraprocessed food: addictive, toxic, and ready for regulation, Nutrients, 2020, vol. 12, p. 3401. https://doi.org/10.3390/nu12113401
Maass, F., Michalke, B., Willkommen, D., et al., Cerebrospinal fluid iron–ferritin ratio as a potential progression marker for Parkinson’s disease, Mov. Disord., 2021, vol. 36, no. 12, pp. 2967–2969. https://doi.org/10.1002/mds.28790
MacMahon Copas, A.N., McComish, S.F., Fletcher, J.M., et al., The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes?, Front. Neurol., 2021, vol. 12, p. 666737. https://doi.org/10.3389/fneur.2021.666737
Malpetti, M., Passamonti, L., Jones, P.S., et al., Neuroinflammation predicts disease progression in progressive supranuclear palsy, J. Neurol. Neurosurg. Psychiatr., 2021, vol. 92, pp. 769–775.
Mao, L., Jin, H., Wang, M., et al., Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China, J.A.M.A. Neurol., 2020, vol. 77, no. 6, pp. 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
McGeer, P.L., Itagaki, S., Boyes, B.E., et al., Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains, Neurology, 1988, vol. 38, pp. 1285–1291. https://doi.org/10.1212/WNL.38.8.1285
Miyake, Y., Tanaka, K., Fukushima, W., et al., Dietary intake of meta
留言 (0)