The slow but steady rise of binding free energy calculations in drug discovery

Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426. https://doi.org/10.1063/1.1740409

Article  CAS  Google Scholar 

Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comp Phys 22(2):245–268. https://doi.org/10.1016/0021-9991(76)90078-4

Article  Google Scholar 

Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105. https://doi.org/10.1063/1.2978177

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313. https://doi.org/10.1063/1.1749657

Article  CAS  Google Scholar 

Postma JPM, Berendsen HJC, Haak JR (1982) Thermodynamics of cavity formation in water. A molecular dynamics study. Faraday Symposia Chem Soc 17:55–67. https://doi.org/10.1039/fs9821700055

Article  Google Scholar 

Jorgensen WL, Ravimohan C (1985) Monte Carlo simulation of differences in free energies of hydration. J Chem Phys 83(6):3050–3054. https://doi.org/10.1063/1.449208

Article  CAS  Google Scholar 

Tembe BL, McCammon JA (1984) Ligand-receptor interactions. Comput Chem 8(4):281–283

Article  CAS  Google Scholar 

Bash PA, Singh UC, Brown FK, Langridge R, Kollman PA (1987) Calculation of the relative change in binding free energy of a protein-inhibitor complex. Science 235(4788):574–576. https://doi.org/10.1126/science.3810157

Article  PubMed  CAS  Google Scholar 

Singh UC, Benkovic SJ (1988) A free-energy perturbation study of the binding of methotrexate to mutants of dihydrofolate reductase. Proc Natl Acad Sci 85(24):9519–9523. https://doi.org/10.1073/pnas.85.24.9519

Article  PubMed  PubMed Central  CAS  Google Scholar 

Straatsma TP, McCammon JA (1992) Computational alchemy. Annu Rev Phys Chem 43(1):407–435. https://doi.org/10.1146/annurev.pc.43.100192.002203

Article  CAS  Google Scholar 

Rao BG, Kim EE, Murcko MA (1996) Calculation of solvation and binding free energy differences between VX-478 and its analogs by free energy perturbation and AMSOL methods. J Comput Aided Mol Des 10(1):23–30. https://doi.org/10.1007/bf00124462

Article  PubMed  CAS  Google Scholar 

Erion MD, Reddy MR (1998) Calculation of relative hydration free energy differences for heteroaromatic compounds: use in the design of adenosine deaminase and cytidine deaminase inhibitors. J Am Chem Soc 120(14):3295–3304. https://doi.org/10.1021/ja972906j

Article  CAS  Google Scholar 

Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551. https://doi.org/10.1021/jp0217839

Article  CAS  Google Scholar 

Woo H-J, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci USA 102(19):6825–6830. https://doi.org/10.1073/pnas.0409005102

Article  PubMed  PubMed Central  CAS  Google Scholar 

Radmer RJ, Kollman PA (1997) Free energy calculation methods: a theoretical and empirical comparison of numerical errors and a new method qualitative estimates of free energy changes. J Comput Chem 18(7):902–919

Article  CAS  Google Scholar 

Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26(16):1689–1700. https://doi.org/10.1002/jcc.20297

Article  PubMed  CAS  Google Scholar 

Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80:046705. https://doi.org/10.1103/PhysRevE.80.046705

Article  CAS  Google Scholar 

S S, Roux B, Andersen OS (2000) Free energy simulations: thermodynamic reversibility and variability. J Phys Chem B 104(21):5179–5190. https://doi.org/10.1021/jp994193s

Article  CAS  Google Scholar 

Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539. https://doi.org/10.1016/0009-2614(94)00397-1

Article  CAS  Google Scholar 

Lee T-S, Lin Z, Allen BK, Lin C, Radak BK, Tao Y, Tsai H-C, Sherman W, York DM (2020) Improved alchemical free energy calculations with optimized smoothstep softcore potentials. J Chem Theory Comput 16(9):5512–5525. https://doi.org/10.1021/acs.jctc.0c00237

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103. https://doi.org/10.1063/1.4826261

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pan AC, Xu H, Palpant T, Shaw DE (2017) Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations. J Chem Theory Comput 13(7):3372–3377. https://doi.org/10.1021/acs.jctc.7b00172 (PMID: 28582625)

Article  PubMed  CAS  Google Scholar 

Mobley DL, Chodera JD, Dill KA (2007) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theory Comput 3(4):1231–1235. https://doi.org/10.1021/ct700032n (PMID: 18843379)

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R (2013) Modeling local structural rearrangements using fep/rest: application to relative binding affinity predictions of cdk2 inhibitors. J Chem Theory Comput 9(2):1282–1293. https://doi.org/10.1021/ct300911a

Article  PubMed  CAS  Google Scholar 

Jiang W, Roux B (2010) Free energy perturbation Hamiltonian replica-exchange molecular dynamics (fep/h-remd) for absolute ligand binding free energy calculations. J Chem Theory Comput 6(9):2559–2565. https://doi.org/10.1021/ct1001768

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang S, Hahn DF, Shirts MR, Voelz VA (2021) Expanded ensemble methods can be used to accurately predict protein-ligand relative binding free energies. J Chem Theory Comput 17(10):6536–6547. https://doi.org/10.1021/acs.jctc.1c00513

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45):13052–13063. https://doi.org/10.1021/jp0735987

Article  PubMed  CAS  Google Scholar 

Chodera JD (2016) A simple method for automated equilibration detection in molecular simulations. J Chem Theory Comput 12(4):1799–1805. https://doi.org/10.1021/acs.jctc.5b00784

Article  PubMed  PubMed Central  CAS  Google Scholar 

Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput-Aided Mol Des 29(5):397–411. https://doi.org/10.1007/s10822-015-9840-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mey ASJS, Allen BK, Bruce McDonald HE, Chodera JD, Hahn DF, Kuhn M, Michel J, Mobley DL, Naden LN, Prasad S, Rizzi A, Scheen J, Shirts MR, Tresadern G, Xu H (2020) Best practices for alchemical free energy calculations [article v1.0]. Living J Comput Mol Sci 2(1):18378. https://doi.org/10.33011/livecoms.2.1.18378

Article  PubMed  PubMed Central  Google Scholar 

Price MLP, Jorgensen WL (2000) Analysis of binding affinities for celecoxib analogues with COX-1 and COX-2 from combined docking and Monte Carlo simulations and insight into the COX-2/COX-1 selectivity. J Am Chem Soc 122(39):9455–9466. https://doi.org/10.1021/ja001018c

Article  CAS  Google Scholar 

Lee T-S, Kollman PA (2000) Theoretical studies suggest a new antifolate as a more potent inhibitor of thymidylate synthase. J Am Chem Soc 122(18):4385–4393. https://doi.org/10.1021/ja9925554

Article  CAS  Google Scholar 

Reddy MR, Erion MD (2001) Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc 123(26):6246–6252. https://doi.org/10.1021/ja0103288

Article  PubMed  CAS  Google Scholar 

Reddy MR, Erion MD (2001) Free energy calculations in rational drug design. Kluwer Academic/Plenum Publishers, New York

Google Scholar 

Bollini M, Domaoal RA, Thakur VV, Gallardo-Macias R, Spasov KA, Anderson KS, Jorgensen WL (2011) Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. J Med Chem 54(24):8582–8591. https://doi.org/10.1021/jm201134m

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ivetac A, Swift SE, Boyer PL, Diaz A, Naughton J, Young JAT, Hughes SH, McCammon JA (2014) Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles. Chem Biol Drug Des 83(5):521–531. https://doi.org/10.1111/cbdd.12277

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif