Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation

Sanders I, Mu L (1998) Anatomy of the human internal superior laryngeal nerve. Anat Rec 252(4):646–656. https://doi.org/10.1002/(SICI)1097-0185(199812)252:4%3c646::AID-AR15%3e3.0.CO;2-E

Article  CAS  PubMed  Google Scholar 

Bradley RM (2000) Sensory receptors of the larynx. Am J Med 108(Suppl 4a):47S-50S. https://doi.org/10.1016/s0002-9343(99)00339-3

Article  PubMed  Google Scholar 

Jette ME, Clary MS, Prager JD, Finger TE (2019) Chemical receptors of the arytenoid: a comparison of human and mouse. Laryngoscope. https://doi.org/10.1002/lary.27931

Article  PubMed  PubMed Central  Google Scholar 

Sant’Ambrogio G, Mathew OP, Sant’Ambrogio FB, Fisher JT (1985) Laryngeal cold receptors. Respir Physiol 59(1):35–44. https://doi.org/10.1016/0034-5687(85)90016-7

Article  CAS  PubMed  Google Scholar 

Bianconi R, Molinari G (1962) Electroneurographic evidence of muscle spindles and other sensory endings in the intrinsic laryngeal muscles of the cat. Acta Otolaryngol 55:253–259. https://doi.org/10.3109/00016486209127360

Article  CAS  PubMed  Google Scholar 

Hamamoto T, Takumida M, Hirakawa K, Tatsukawa T, Ishibashi T (2009) Localization of transient receptor potential vanilloid (TRPV) in the human larynx. Acta Otolaryngol 129(5):560–568. https://doi.org/10.1080/00016480802273108

Article  CAS  PubMed  Google Scholar 

Yamamoto Y, Taniguchi K (2005) Immunolocalization of VR1 and VRL1 in rat larynx. Auton Neurosci 117(1):62–65. https://doi.org/10.1016/j.autneu.2004.11.003

Article  CAS  PubMed  Google Scholar 

Hamamoto T, Takumida M, Hirakawa K, Takeno S, Tatsukawa T (2008) Localization of transient receptor potential channel vanilloid subfamilies in the mouse larynx. Acta Otolaryngol 128(6):685–693. https://doi.org/10.1080/00016480701669489

Article  CAS  PubMed  Google Scholar 

Uno T, Koike S, Bamba H, Hirota R, Hisa Y (2004) Capsaicin receptor expression in rat laryngeal innervation. Ann Otol Rhinol Laryngol 113(5):356–358. https://doi.org/10.1177/000348940411300503

Article  PubMed  Google Scholar 

Andreatta RD, Mann EA, Poletto CJ, Ludlow CL (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93(5):1622–1629. https://doi.org/10.1152/japplphysiol.00417.2002

Article  PubMed  Google Scholar 

Davis PJ, Nail BS (1987) Quantitative analysis of laryngeal mechanosensitivity in the cat and rabbit. J Physiol 388:467–485. https://doi.org/10.1113/jphysiol.1987.sp016625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammer MJ, Krueger MA (2014) Voice-related modulation of mechanosensory detection thresholds in the human larynx. Exp Brain Res 232(1):13–20. https://doi.org/10.1007/s00221-013-3703-1

Article  PubMed  Google Scholar 

Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD (2020) An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181(3):574–89.e14. https://doi.org/10.1016/j.cell.2020.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludlow CL (2015) Laryngeal reflexes: physiology, technique, and clinical use. J Clin Neurophysiol 32(4):284–293. https://doi.org/10.1097/Wnp.0000000000000187

Article  PubMed  PubMed Central  Google Scholar 

Levendoski EE, Leydon C, Thibeault SL (2014) Vocal fold epithelial barrier in health and injury: a research review. J Speech Lang Hear Res 57(5):1679–1691. https://doi.org/10.1044/2014_JSLHR-S-13-0283

Article  PubMed  Google Scholar 

Erickson E, Sivasankar M (2010) Simulated reflux decreases vocal fold epithelial barrier resistance. Laryngoscope 120(8):1569–1575. https://doi.org/10.1002/lary.20983

Article  PubMed  PubMed Central  Google Scholar 

Erickson-DiRenzo E, Easwaran M, Martinez JD, Dewan K, Sung CK (2021) Mainstream cigarette smoke impacts the mouse vocal fold epithelium and mucus barrier. Laryngoscope. https://doi.org/10.1002/lary.29572

Article  PubMed  PubMed Central  Google Scholar 

Titze IR (1994) Mechanical stress in phonation. J Voice 8(2):99–105

Article  CAS  PubMed  Google Scholar 

Novaleski CK, Kimball EE, Mizuta M, Rousseau B (2016) Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium. Tissue Cell 48(5):407–416. https://doi.org/10.1016/j.tice.2016.08.007

Article  PubMed  PubMed Central  Google Scholar 

Khosla S, Murugappan S, Gutmark E (2008) What can vortices tell us about vocal fold vibration and voice production. Curr Opin Otolaryngol Head Neck Surg 16(3):183–187

Article  PubMed  Google Scholar 

Khosla S, Murugappan S, Paniello R, Ying J, Gutmark E (2009) Role of vortices in voice production: normal versus asymmetric tension. Laryngoscope 119(1):216–221

Article  PubMed  Google Scholar 

Ling C, Yamashita M, Waselchuk EA, Raasch JL, Bless DM, Welham NV (2010) Alteration in cellular morphology, density and distribution in rat vocal fold mucosa following injury. Wound Repair Regen 18(1):89–97. https://doi.org/10.1111/j.1524-475X.2009.00550.x

Article  PubMed  Google Scholar 

Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. https://doi.org/10.1038/nature07039

Article  CAS  PubMed  Google Scholar 

Branski RC, Verdolini K, Sandulache V, Rosen CA, Hebda PA (2006) Vocal fold wound healing: a review for clinicians. J Voice 20(3):432–442. https://doi.org/10.1016/j.jvoice.2005.08.005

Article  PubMed  Google Scholar 

Yamashita M, Bless DM, Welham NV (2010) Morphological and extracellular matrix changes following vocal fold injury in mice. Cells Tissues Organs 192(4):262–271. https://doi.org/10.1159/000315476

Article  PubMed  PubMed Central  Google Scholar 

Lungova V, Verheyden JM, Sun X, Thibeault SL (2018) beta-Catenin signaling is essential for mammalian larynx recanalization and the establishment of vocal fold progenitor cells. Development. https://doi.org/10.1242/dev.157677

Article  PubMed  PubMed Central  Google Scholar 

Dowdall JR, Sadow PM, Hartnick C, Vinarsky V, Mou H, Zhao R et al (2015) Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold. Laryngoscope 125(9):E313–E319. https://doi.org/10.1002/lary.25264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailly L, Cochereau T, Orgeas L, Henrich-Bernardoni N, Rolland-du-Roscoat S, McLeer-Florin A et al (2018) 3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode. Sci Rep 8(1):14003. https://doi.org/10.1038/s41598-018-31849-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60. https://doi.org/10.1126/science.1193270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B et al (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17(7):1739–1746. https://doi.org/10.1016/j.celrep.2016.10.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF et al (2017) Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543(7643):118–121. https://doi.org/10.1038/nature21407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien CB, Morcos PA et al (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484(7395):546–549. https://doi.org/10.1038/nature10999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Y, Yang X, Jiang J, Xiao B (2021) Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. Trends Biochem Sci 46(6):472–488. https://doi.org/10.1016/j.tibs.2021.01.008

Article  CAS  PubMed  Google Scholar 

Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H et al (2021) Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 164:105391

Article  CAS  PubMed  Google Scholar 

Shin SM, Moehring F, Itson-Zoske B, Fan F, Stucky CL, Hogan QH et al (2021) Piezo2 mechanosensitive ion channel is located to sensory neurons and non-neuronal cells in rat peripheral sensory pathway: implications in pain. bioRxiv. 6:31781

Google Scholar 

Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG et al (2017) Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541(7636):176–181. https://doi.org/10.1038/nature20793

Article  CAS 

留言 (0)

沒有登入
gif