Cancer photodynamic therapy with chlorin e6-loaded, goat milk-derived extracellular vesicles: [18F]FDG lights up the way

van Straten D, Mashayekhi V, de Bruijn H, Oliveira S, Robinson D. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9:19. https://doi.org/10.3390/cancers9020019.

Article  CAS  PubMed Central  Google Scholar 

Derks YHW, van Lith SAM, Amatdjais-Groenen HIV, Wouters LWM, Kip A, Franssen GM, et al. Theranostic PSMA ligands with optimized backbones for intraoperative multimodal imaging and photodynamic therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49:2425–35. https://doi.org/10.1007/s00259-022-05685-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou Z, Zhou M, Ma Y, Xu X, Zhang Z, Lai S, et al. Size-changeable nanoprobes for the combined radiotherapy and photodynamic therapy of tumor. Eur J Nucl Med Mol Imaging. 2022;49:2655–67. https://doi.org/10.1007/s00259-022-05830-9.

Article  CAS  PubMed  Google Scholar 

Liu L-H, Qiu W-X, Li B, Zhang C, Sun L-F, Wan S-S, et al. A red light activatable multifunctional prodrug for image-guided photodynamic therapy and cascaded chemotherapy. Adv Funct Mater. 2016;26:6257–69. https://doi.org/10.1002/adfm.201602541.

Article  CAS  Google Scholar 

Ha SYY, Wong RCH, Wong CTT, Ng DKP. An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy. Eur J Med Chem. 2019;174:56–65. https://doi.org/10.1016/j.ejmech.2019.04.049.

Article  CAS  PubMed  Google Scholar 

Ha SYY, Zhou Y, Fong W-P, Ng DKP. Multifunctional molecular therapeutic agent for targeted and controlled dual chemo- and photodynamic therapy. J Med Chem. 2020;63:8512–23. https://doi.org/10.1021/acs.jmedchem.0c00893.

Article  CAS  PubMed  Google Scholar 

Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. Chem Rec. 2017;17:775–802. https://doi.org/10.1002/tcr.201600121.

Article  CAS  PubMed  Google Scholar 

Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17:657–74. https://doi.org/10.1038/s41571-020-0410-2.

Article  PubMed  Google Scholar 

Boschi F, Calderan L, D’Ambrosio D, Marengo M, Fenzi A, Calandrino R, et al. In vivo 18F-FDG tumour uptake measurements in small animals using Cerenkov radiation. Eur J Nucl Med Mol Imaging. 2010;38:120–7. https://doi.org/10.1007/s00259-010-1630-y.

Article  PubMed  Google Scholar 

Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys. 2017;4:14. https://doi.org/10.1186/s40658-017-0181-8.

Article  PubMed  PubMed Central  Google Scholar 

Habte F, Natarajan A, Paik DS, Gambhir SS. Quantification of Cerenkov Luminescence Imaging (CLI) comparable with 3-D PET standard measurements. Mol Imaging. 2018;17:153601211878863. https://doi.org/10.1177/1536012118788637.

Article  CAS  Google Scholar 

Klein JS, Mitchell GS, Cherry SR. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys Med Biol. 2017;62:4183–201. https://doi.org/10.1088/1361-6560/aa6641.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen CE, Weyergang A, Edwards VT, Berg K, Brech A, Weisheit S, et al. Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent: Possible mechanisms and approaches for overcoming PDT-resistance. Biochem Pharmacol. 2017;144:63–77. https://doi.org/10.1016/j.bcp.2017.08.002.

Article  CAS  PubMed  Google Scholar 

Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharmaceutica Sinica B. 2018;8:137–46. https://doi.org/10.1016/j.apsb.2017.09.003.

Article  PubMed  Google Scholar 

Wu Z-M, Wang L, Zhu W, Gao Y-H, Wu H-M, Wang M, et al. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma. Biomed Pharmacother. 2017;92:285–92. https://doi.org/10.1016/j.biopha.2017.05.052.

Article  CAS  PubMed  Google Scholar 

Sun S, Chen J, Jiang K, Tang Z, Wang Y, Li Z, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl Mater Interfaces. 2019;11:5791–803. https://doi.org/10.1021/acsami.8b19042.

Article  CAS  PubMed  Google Scholar 

Yang C-J, Li B, Zhang Z-J, Gao J-M, Wang M-J, Zhao X-B, et al. Design, synthesis and antineoplastic activity of novel 20(S)-acylthiourea derivatives of camptothecin. Eur J Med Chem. 2020;187:111971. https://doi.org/10.1016/j.ejmech.2019.111971.

Article  CAS  PubMed  Google Scholar 

Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B. 2016;6:287–96. https://doi.org/10.1016/j.apsb.2016.02.001.

Article  PubMed  PubMed Central  Google Scholar 

Carter N, Mathiesen AH, Miller N, Brown M, Colunga Biancatelli RML, Catravas JD, et al. Endothelial cell-derived extracellular vesicles impair the angiogenic response of coronary artery endothelial cells. Front Cardiovasc Med. 2022;9:923081. https://doi.org/10.3389/fcvm.2022.923081.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandendriessche C, Kapogiannis D, Vandenbroucke RE. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer’s disease. Adv Drug Deliv Rev. 2022;190:114486. https://doi.org/10.1016/j.addr.2022.114486.

Article  CAS  PubMed  Google Scholar 

Cai Z, Saiding Q, Cheng L, Zhang L, Wang Z, Wang F, et al. Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioact Mater. 2021;6:4506–16. https://doi.org/10.1016/j.bioactmat.2021.04.039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669. https://doi.org/10.1111/cpr.12669.

Article  PubMed  PubMed Central  Google Scholar 

Guo S-C, Tao S-C, Yin W-J, Qi X, Yuan T, Zhang C-Q. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7:81–96. https://doi.org/10.7150/thno.16803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110:319–30. https://doi.org/10.1093/cvr/cvw054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4:1063–75. https://doi.org/10.1038/s41551-020-00637-1.

Article  CAS  PubMed  Google Scholar 

Guo R, Jiang D, Gai Y, Qian R, Zhu Z, Gao Y, et al. Chlorin e6-loaded goat milk-derived extracellular vesicles for Cerenkov luminescence-induced photodynamic therapy. Eur J Nucl Med Mol Imaging. 2022:ePub. https://doi.org/10.1007/s00259-022-05978-4.

Kamkaew A, Cheng L, Goel S, Valdovinos HF, Barnhart TE, Liu Z, et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016;8:26630–7. https://doi.org/10.1021/acsami.6b10255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, et al. Magnetic targeting of nanotheranostics enhances Cerenkov radiation-induced photodynamic therapy. J Am Chem Soc. 2018;140:14971–9. https://doi.org/10.1021/jacs.8b09374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boschi F, Spinelli AE. Nanoparticles for Cerenkov and radioluminescent light enhancement for imaging and radiotherapy. Nanomaterials. 2020;10:1771. https://doi.org/10.3390/nano10091771.

Article  CAS  PubMed Central  Google Scholar 

Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Kyakulaga A-H, Wilcher SA, et al. Milk exosomes - natural nanoparticles for siRNA delivery. Oncol Lett. 2019;449:186–95. https://doi.org/10.1016/j.canlet.2019.02.011.

Article  CAS  Google Scholar 

Duan D, Liu H, Xu Y, Han Y, Xu M, Zhang Z, et al. Activating TiO2 nanoparticles: gallium-68 serves as a high-yield photon emitter for cerenkov-induced photodynamic therapy. ACS App Mater Interfaces. 2018;10:5278–86. https://doi.org/10.1021/acsami.7b17902.

Article  CAS  Google Scholar 

Hartl BA, Hirschberg H, Marcu L, Cherry SR. Activating photodynamic therapy in vitro with Cerenkov radiation generated from Yttrium-90. J Environ Pathol Toxicol Onlol. 2016;35:185–92. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016016903.

Article  Google Scholar 

留言 (0)

沒有登入
gif