Development of small-molecular-based radiotracers for PET imaging of PD-L1 expression and guiding the PD-L1 therapeutics

Sharma P, Allison JP. Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol. 2020;20:75–6.

Article  CAS  PubMed  Google Scholar 

Xu W, Atkins MB, McDermott DF. Checkpoint inhibitor immunotherapy in kidney cancer. Nat Rev Urol. 2020;17:137–50.

Article  CAS  PubMed  Google Scholar 

Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

Article  CAS  PubMed  Google Scholar 

Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21:24–33.

Article  CAS  PubMed  Google Scholar 

Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol. 2011;350:17–37.

CAS  PubMed  Google Scholar 

Cha JH, Chan LC, Li CW, et al. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dermani FK, Samadi P, Rahmani G, et al. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2019;234:1313–25.

Article  CAS  PubMed  Google Scholar 

Nishino M, Ramaiya NH, Hatabu H, et al. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14:655–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Zugazagoitia J, Martinez-Morilla S, et al. Digital quantitative assessment of PD-L1 using digital spatial profiling. Lab Invest. 2020;100:1311–7.

Article  PubMed  PubMed Central  Google Scholar 

Broos K, Lecocq Q, Raes G, et al. Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics. 2018;8:3559–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lütje S, Feldmann G, Essler M, et al. Immune checkpoint imaging in oncology: a game changer toward personalized immunotherapy? J Nucl Med. 2020;61:1137–44.

Article  PubMed  PubMed Central  Google Scholar 

van de Donk PP, Kist de Ruijter L, Lub-de Hooge MN, et al. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics. 2020;10:1708–18.

Article  PubMed  PubMed Central  Google Scholar 

Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a noninvasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24:1852–8.

Article  CAS  PubMed  Google Scholar 

Christensen C, Kristensen LK, Alfsen MZ, et al. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody. Eur J Nucl Med Mol Imaging. 2020;47:1302–13.

Article  CAS  PubMed  Google Scholar 

Jung KH, Park JW, Lee JH, et al. 89Zr-labeled anti-PD-L1 antibody PET monitors gemcitabine therapy induced modulation of tumor PD-L1 expression. J Nucl Med. 2021;62:656–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huisman MC, Niemeijer AN, Windhorst AD, et al. Quantification of PD-L1 expression with 18F-BMS-986192 PET/CT in patients with advanced-stage non-small cell lung cancer. J Nucl Med. 2020;61:1455–60.

Article  PubMed  Google Scholar 

Nienhuis PH, Antunes IF, Glaudemans A, et al. 18F-BMS986192 PET imaging of PD-L1 in metastatic melanoma patients with brain metastases treated with immune checkpoint inhibitors: a pilot study. J Nucl Med. 2021. J Nucl Med. 2022;63:899–905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Silva RA, Kumar D, Lisok A, et al. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm. 2018;15:3946–52.

Article  PubMed  PubMed Central  Google Scholar 

Kumar D, Mishra A, Lisok A, et al. Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics. Proc Natl Acad Sci USA. 2021;118: e2107982118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Jiang J, Yang X, et al. First-in-human evaluation of a PD-L1-binding peptide radiotracer in non-small cell lung cancer patients with PET. J Nucl Med. 2022;63:536–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou M, Wang X, Chen B, et al. Preclinical and first-in-human evaluation of F-labeled D-peptide antagonist for PD-L1 status imaging with PET. Eur J Nucl Med Mol Imaging. 2022;49:4312–24.

Article  CAS  PubMed  Google Scholar 

Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci. 2021;282: 119813.

Article  CAS  PubMed  Google Scholar 

Chen T, Li Q, Liu Z, et al. Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: a new choice for immunotherapy? Eur J Med Chem. 2019;161:378–98.

Article  CAS  PubMed  Google Scholar 

Kumar D, Lisok A, Dahmane E, et al. Peptide-based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest. 2019;129:616–30.

Article  PubMed  PubMed Central  Google Scholar 

Bamminger K, Pichler V, Vraka C, et al. On the road towards small-molecule programmed cell death 1 ligand 1 positron emission tomography tracers: a ligand-based drug design approach. Pharmaceuticals (Basel). 2023;16:1051–70.

Article  CAS  PubMed  Google Scholar 

Meng L, Fang J, Zhao L, et al. Rational design and pharmacomodulation of protein-binding theranostic radioligands for targeting the fibroblast activation protein. J Med Chem. 2022;65:8245–57.

Article  CAS  PubMed  Google Scholar 

Lin A, Wei T, Meng H, et al. Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer. 2019;18:139–47.

Article  PubMed  PubMed Central  Google Scholar 

Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rehman JA, Han G, Carvajal-Hausdorf DE, et al. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol. 2017;30:340–9.

Article  CAS  PubMed  Google Scholar 

Liu Q, Jiang L, Li K, Li H, Lv G, Lin J, Qiu L. Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers. Cancer Immunol Immunother. 2021;70:1721–33.

Article  CAS  PubMed  Google Scholar 

Wen X, Shi C, Zhao L, et al. Immuno-SPECT/PET imaging with radioiodinated anti-PD-L1 antibody to evaluate PD-L1 expression in immune-competent murine models and PDX model of lung adenocarcinoma. Nucl Med Biol. 2020;86–87:44–51.

Article  PubMed  Google Scholar 

Nedrow JR, Josefsson A, Park S, et al. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med. 2017;58:1560–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif