Ligand recognition and allosteric modulation of the human MRGPRX1 receptor

St Sauver, J. L. et al. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clin. Proc. 88, 56–67 (2013).

Article  Google Scholar 

Sharif, B., Ase, A. R., Ribeiro-da-Silva, A. & Seguela, P. Differential coding of itch and pain by a subpopulation of primary afferent neurons. Neuron 106, 940–951 (2020).

Article  CAS  PubMed  Google Scholar 

Racine, M., Hudson, M., Baron, M., Nielson, W. R. & Canadian Scleroderma Research, G. The impact of pain and itch on functioning and health-related quality of life in systemic sclerosis: an exploratory study. J. Pain. Symptom Manag. 52, 43–53 (2016).

Article  Google Scholar 

Klein, A. et al. Pruriception and neuronal coding in nociceptor subtypes in human and nonhuman primates. eLife 10, e64506 (2021).

Sun, S. et al. Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord. Neuron 93, 840–853 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim, W. S. & Oh, U. Histamine-induced itch and its relationship with pain. Mol. Pain. 4, 29 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Meixiong, J. & Dong, X. Mas-related G protein–coupled receptors and the biology of itch sensation. Annu. Rev. Genet. 51, 103–121 (2017).

Article  CAS  PubMed  Google Scholar 

Akiyama, T., Lerner, E. A. & Carstens, E. Protease-activated receptors and itch. Handb. Exp. Pharmacol. 226, 219–235 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, J. et al. Piezo2 channel–Merkel cell signaling modulates the conversion of touch to itch. Science 360, 530–533 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, X., Han, S., Zylka, M. J., Simon, M. I. & Anderson, D. J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

Article  CAS  PubMed  Google Scholar 

Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Targeting human Mas-related G protein–coupled receptor X1 to inhibit persistent pain. Proc. Natl Acad. Sci. USA 114, E1996–E2005 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Lembo, P. M. et al. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat. Neurosci. 5, 201–209 (2002).

Article  CAS  PubMed  Google Scholar 

Wen, W. et al. Discovery and characterization of 2-(cyclopropanesulfonamido)-N-(2-ethoxyphenyl)benzamide, ML382: a potent and selective positive allosteric modulator of MrgX1. ChemMedChem 10, 57–61 (2015).

Article  CAS  PubMed  Google Scholar 

Tseng, P. Y., Zheng, Q., Li, Z. & Dong, X. MrgprX1 mediates neuronal excitability and itch through tetrodotoxin-resistant sodium channels. Itch (Phila) 4, e28 (2019).

Cao, C. et al. Structure, function and pharmacology of human itch GPCRs. Nature 600, 170–175 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prchalová, E. et al. Discovery of benzamidine- and 1-aminoisoquinoline-based human MAS-related G-protein-coupled receptor X1 (MRGPRX1) agonists. J. Med. Chem. 62, 8631–8641 (2019).

Article  PubMed  Google Scholar 

Kim, K. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koehl, A. et al. Structure of the µ-opioid receptor–Gi protein complex. Nature 558, 547–552 (2018).

Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed Sealfon, S. C.) 366–428 (Academic Press, 1995).

Han, S. K. et al. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq/11 pathway. Proc. Natl Acad. Sci. USA 99, 14740–14745 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wold, E. A., Chen, J., Cunningham, K. A. & Zhou, J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J. Med. Chem. 62, 88–127 (2019).

Article  CAS  PubMed  Google Scholar 

Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

Article  CAS  PubMed  Google Scholar 

Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karhu, T. et al. Isolation of new ligands for orphan receptor MRGPRX1—hemorphins LVV-H7 and VV-H7. Peptides 96, 61–66 (2017).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. Tick peptides evoke itch by activating MrgprC11/MRGPRX1 to sensitize TRPV1 in pruriceptors. J. Allergy Clin. Immunol. 147, 2236–2248 (2021).

Article  CAS  PubMed  Google Scholar 

Du, Y. et al. Assembly of a GPCR-G protein complex. Cell 177, 1232–1242 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469–473 (2021).

Article  CAS  PubMed  Google Scholar 

Peck, J. V., Fay, J. F. & Strauss, J. D. High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ 9, 243–252 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article  CAS  PubMed  Google Scholar 

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

Article  CAS  PubMed  Google Scholar 

Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

Article  CAS  PubMed  Google Scholar 

Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

Article  CAS  PubMed  Google Scholar 

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Article  PubMed  Google Scholar 

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson, M. J., van Zundert, G. C. P., Borrelli, K. & Skiniotis, G. GemSpot: a pipeline for robust modeling of ligands into cryo-EM maps. Structure 28, 707–716 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif