Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson’s Disease

Abe K, Kato G, Katafuchi T, Tamae A, Furue H, Yoshimura M (2009) Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro. Neuroscience 159:316–324. https://doi.org/10.1016/j.neuroscience.2008.12.021

Article  CAS  PubMed  Google Scholar 

Alhaider AA, Lei SZ, Wilcox GL (1991) Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 11:1881–1888. https://doi.org/10.1523/jneurosci.11-07-01881.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonini A, Tinazzi M (2015) Targeting pain in Parkinson’s disease. Lancet Neurol 14:1144–1145. https://doi.org/10.1016/s1474-4422(15)00286-0

Article  PubMed  Google Scholar 

Bardoni R (2019) Serotonergic modulation of nociceptive circuits in spinal cord dorsal horn. Curr Neuropharmacol 17:1133–1145. https://doi.org/10.2174/1570159X17666191001123900

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boura E, Stamelou M, Vadasz D, Ries V, Unger MM, Kagi G, Oertel WH, Moller JC et al (2017) Is increased spinal nociception another hallmark for Parkinson’s disease? J Neurol 264:570–575. https://doi.org/10.1007/s00415-016-8390-y

Article  PubMed  Google Scholar 

Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

Article  PubMed  Google Scholar 

Broen MP, Braaksma MM, Patijn J, Weber WE (2012) Prevalence of pain in Parkinson’s disease: a systematic review using the modified QUADAS tool. Mov Disord 27:480–484. https://doi.org/10.1002/mds.24054

Article  PubMed  Google Scholar 

Cao LF, Peng XY, Huang Y, Wang B, Zhou FM, Cheng RX, Chen LH, Luo WF et al (2016) Restoring spinal noradrenergic inhibitory tone attenuates pain hypersensitivity in a rat model of Parkinson’s disease. Neural Plast 2016:6383240. https://doi.org/10.1155/2016/6383240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charles KA, Naudet F, Bouali-Benazzouz R, Landry M, De Deurwaerdere P, Fossat P, Benazzouz A (2018) Alteration of nociceptive integration in the spinal cord of a rat model of Parkinson’s disease. Mov Disord 33:1010–1015. https://doi.org/10.1002/mds.27377

Article  CAS  PubMed  Google Scholar 

Chaudhuri KR, Healy DG, Schapira AHV (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245. https://doi.org/10.1016/s1474-4422(06)70373-8

Article  PubMed  Google Scholar 

Chen Y, Oatway MA, Weaver LC (2009) Blockade of the 5-HT3 receptor for days causes sustained relief from mechanical allodynia following spinal cord injury. J Neurosci Res 87:418–424. https://doi.org/10.1002/jnr.21860

Article  CAS  PubMed  Google Scholar 

De la Calle JL, Paíno CL (2002) A procedure for direct lumbar puncture in rats. Brain Res Bull 59:245–250. https://doi.org/10.1016/s0361-9230(02)00866-3

Article  PubMed  Google Scholar 

Doly S, Fischer J, Brisorgueil MJ, Vergé D, Conrath M (2005) Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence. J Comp Neurol 490:256–269. https://doi.org/10.1002/cne.20667

Article  CAS  PubMed  Google Scholar 

Eide PK (1998) Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 36:601–612. https://doi.org/10.1038/sj.sc.3100737

Article  CAS  PubMed  Google Scholar 

Eide PK, Joly NM, Hole K (1990) The role of spinal cord 5-HT1A and 5-HT1B receptors in the modulation of a spinal nociceptive reflex. Brain Res 536:195–200. https://doi.org/10.1016/0006-8993(90)90025-7

Article  CAS  PubMed  Google Scholar 

Fil A, Cano-de-la-Cuerda R, Munoz-Hellin E, Vela L, Ramiro-Gonzalez M, Fernandez-de-Las-Penas C (2013) Pain in Parkinson disease: a review of the literature. Parkinsonism Relat Disord 19:285–294; discussion 285 https://doi.org/10.1016/j.parkreldis.2012.11.009

Ford B (2010) Pain in Parkinson’s disease. Mov Disord 25(Suppl 1):S98-103. https://doi.org/10.1002/mds.22716

Article  PubMed  Google Scholar 

Fukushima T, Ohtsubo T, Tsuda M, Yanagawa Y, Hori Y (2009) Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J Neurophysiol 102:1459–1471. https://doi.org/10.1152/jn.91160.2008

Article  CAS  PubMed  Google Scholar 

Giordano J (1991) Analgesic profile of centrally administered 2-methylserotonin against acute pain in rats. Eur J Pharmacol 199:233–236. https://doi.org/10.1016/0014-2999(91)90462-y

Article  CAS  PubMed  Google Scholar 

Giordano J, Schultea T (2004) Serotonin 5-HT(3) receptor mediation of pain and anti-nociception: implications for clinical therapeutics. Pain Physician 7:141–147

Article  PubMed  Google Scholar 

Hayashida K, Kimura M, Yoshizumi M, Hobo S, Obata H, Eisenach JC (2012) Ondansetron reverses antihypersensitivity from clonidine in rats after peripheral nerve injury: role of γ-aminobutyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia. Anesthesiology 117:389–398. https://doi.org/10.1097/ALN.0b013e318260d381

Article  CAS  PubMed  Google Scholar 

Hori Y, Endo K, Takahashi T (1996) Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J Physiol 492(Pt 3):867–876. https://doi.org/10.1113/jphysiol.1996.sp021352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu B, Doods H, Treede RD, Ceci A (2016) Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci Lett 619:162–167. https://doi.org/10.1016/j.neulet.2016.03.019

Article  CAS  PubMed  Google Scholar 

Huang J, Wang YY, Wang W, Li YQ, Tamamaki N, Wu SX (2008) 5-HT(3A) receptor subunit is expressed in a subpopulation of GABAergic and enkephalinergic neurons in the mouse dorsal spinal cord. Neurosci Lett 441:1–6. https://doi.org/10.1016/j.neulet.2008.04.105

Article  CAS  PubMed  Google Scholar 

Ito A, Kumamoto E, Takeda M, Shibata K, Sagai H, Yoshimura M (2000) Mechanisms for ovariectomy-induced hyperalgesia and its relief by calcitonin: participation of 5-HT1A-like receptor on C-afferent terminals in substantia gelatinosa of the rat spinal cord. J Neurosci 20:6302–6308. https://doi.org/10.1523/jneurosci.20-16-06302.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong HJ, Mitchell VA, Vaughan CW (2012) Role of 5-HT(1) receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn. Br J Pharmacol 165:1956–1965. https://doi.org/10.1111/j.1476-5381.2011.01685.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JM, Jeong SW, Yang J, Lee SH, Kim WM, Jeong S, Bae HB, Yoon MH et al (2015) Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation. Neurosci Lett 600:91–97. https://doi.org/10.1016/j.neulet.2015.05.058

Article  CAS  PubMed  Google Scholar 

Li M, Zhu M, Xu Q, Ding F, Tian Y, Zhang M (2020) Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson’s disease. Biochem Biophys Res Commun 521:868–873. https://doi.org/10.1016/j.bbrc.2019.10.204

Article  CAS  PubMed  Google Scholar 

Li Y, Su S, Yu J, Peng M, Wan S, Ke C (2021) Electrophysiological properties of substantia gelatinosa neurons in the preparation of a slice of middle-aged rat spinal cord. Front Aging Neurosci 13:640265. https://doi.org/10.3389/fnagi.2021.640265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, Xu GY (2020) Upregulation of spinal ASIC1 and NKCC1 expression contributes to chronic visceral pain in rats. Front Mol Neurosci 13:611179. https://doi.org/10.3389/fnmol.2020.611179

Article  CAS  PubMed  Google Scholar 

Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437. https://doi.org/10.1126/science.1718042

Article  CAS  PubMed  Google Scholar 

Marlier L, Teilhac JR, Cerruti C, Privat A (1991) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550:15–23. https://doi.org/10.1016/0006-8993(91)90400-p

Article  CAS  PubMed  Google Scholar 

Oatway MA, Chen Y, Weaver LC (2004) The 5-HT3 receptor facilitates at-level mechanical allodynia following spinal cord injury. Pain 110:259–268. https://doi.org/10.1016/j.pain.2004.03.040

Article  CAS  PubMed  Google Scholar 

Obata H (2017) Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci 18 https://doi.org/10.3390/ijms18112483

Perrin FE, Gerber YN, Teigell M, Lonjon N, Boniface G, Bauchet L, Rodriguez JJ, Hugnot JP et al (2011) Anatomical study of serotonergic innervation and 5-HT(1A) receptor in the human spinal cord. Cell Death Dis 2:e218. https://doi.org/10.1038/cddis.2011.98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sagalajev B, Bourbia N, Beloushko E, Wei H, Pertovaara A (2015) Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors. Behav Brain Res 282:14–24. https://doi.org/10.1016/j.bbr.2014.12.052

Article 

留言 (0)

沒有登入
gif