Inotropes, vasopressors, and mechanical circulatory support for treatment of cardiogenic shock complicating myocardial infarction: a systematic review and network meta-analysis

van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 2017; 136: e232–68. https://doi.org/10.1161/cir.0000000000000525

Article  PubMed  Google Scholar 

Mebazaa A, Combes A, van Diepen S, et al. Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med 2018; 44: 760–73. https://doi.org/10.1007/s00134-018-5214-9

Article  PubMed  Google Scholar 

Thiele H, Ohman EM, de Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J 2019; 40: 2671–83. https://doi.org/10.1093/eurheartj/ehz363

CAS  Article  PubMed  Google Scholar 

Goldberg RJ, Samad NA, Yarzebski J, Gurwitz J, Bigelow C, Gore JM. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 1999; 340: 1162–8. https://doi.org/10.1056/nejm199904153401504

CAS  Article  PubMed  Google Scholar 

Jung RG, Di Santo P, Mathew R, et al. Implications of myocardial infarction on management and outcome in cardiogenic shock. J Am Heart Assoc 2021; 10: e021570. https://doi.org/10.1161/jaha.121.021570

CAS  Article  PubMed  PubMed Central  Google Scholar 

Aissaoui N, Puymirat E, Delmas C, et al. Trends in cardiogenic shock complicating acute myocardial infarction. Eur J Heart Fail 2020; 22: 664–72. https://doi.org/10.1002/ejhf.1750

Article  PubMed  Google Scholar 

Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 1999; 341: 625–34. https://doi.org/10.1056/nejm199908263410901

Thiele H, Akin I, Sandri M, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med 2017; 377: 2419–32. https://doi.org/10.1056/nejmoa1710261

Article  PubMed  Google Scholar 

Henry TD, Tomey MI, Tamis-Holland JE, et al. Invasive management of acute myocardial infarction complicated by cardiogenic shock: a scientific statement from the American Heart Association. Circulation 2021; 143: e815–29. https://doi.org/10.1161/cir.0000000000000959

Article  PubMed  Google Scholar 

Levy B, Buzon J, Kimmoun A. Inotropes and vasopressors use in cardiogenic shock: when, which and how much? Curr Opin Crit Care 2019; 25: 384–90. https://doi.org/10.1097/mcc.0000000000000632

Article  PubMed  Google Scholar 

Scheeren TW, Bakker J, Kaufmann T, et al. Current use of inotropes in circulatory shock. Ann Intensive Care 2021; 11: 21. https://doi.org/10.1186/s13613-021-00806-8

Article  PubMed  PubMed Central  Google Scholar 

Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet 2020; 396: 199–212. https://doi.org/10.1016/s0140-6736(20)31047-3

Article  PubMed  Google Scholar 

Ni hici T, Boardman HM, Baig K, et al. Mechanical assist devices for acute cardiogenic shock. Cochrane Database Syst Rev 2020; 6: CD013002. https://doi.org/10.1002/14651858.cd013002.pub2

Uhlig K, Efremov L, Tongers J, et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev 2020; 11: CD009669. https://doi.org/10.1002/14651858.cd009669.pub4

Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 2019; 94: 29–37. https://doi.org/10.1002/ccd.28329

Article  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. https://doi.org/10.1136/bmj.n71

Article  PubMed  PubMed Central  Google Scholar 

Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015; 162: 777–84. https://doi.org/10.7326/m14-2385

Article  PubMed  Google Scholar 

Higgins JP, Savović, Page MJ, Sterne JA. Revised Cochrane risk of bias tool for randomized trials (ROB 2.0), 2016. Available from URL: https://www.unisa.edu.au/contentassets/72bf75606a2b4abcaf7f17404af374ad/rob2-0_indiv_main_guidance.pdf (accessed July 2022).

DerSimonian R, Laìrd N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–88. https://doi.org/10.1016/0197-2456(86)90046-2

CAS  Article  PubMed  Google Scholar 

Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 2012; 3: 98–110. https://doi.org/10.1002/jrsm.1044

CAS  Article  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60. https://doi.org/10.1136/bmj.327.7414.557

Article  PubMed  PubMed Central  Google Scholar 

White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 2012; 3: 111–25. https://doi.org/10.1002/jrsm.1045

Article  PubMed  PubMed Central  Google Scholar 

White IR. Network meta-analysis. Stata J 2015; 15: 951–85.

Fernando SM, Di Santo P, Sadeghirad B, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med 2021; 47: 1078–88. https://doi.org/10.1007/s00134-021-06505-z

Article  PubMed  Google Scholar 

Fernando SM, Tran A, Sadeghirad B, et al. Noninvasive respiratory support following extubation in critically ill adults: a systematic review and network meta-analysis. Intensive Care Med 2022; 48: 137–47. https://doi.org/10.1007/s00134-021-06581-1

Article  PubMed  Google Scholar 

Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 2006; 101: 447–59. https://doi.org/10.1198/016214505000001302

CAS  Article  Google Scholar 

Yepes-Nuñez JJ, Li SA, Guyatt G, et al. Development of the summary of findings table for network meta-analysis. J Clin Epidemiol 2019; 115: 1–13. https://doi.org/10.1016/j.jclinepi.2019.04.018

Article  PubMed  Google Scholar 

Brignardello-Petersen R, Bonner A, Alexander PE, et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 2018; 93: 36–44. https://doi.org/10.1016/j.jclinepi.2017.10.005

Article  PubMed  Google Scholar 

Brignardello-Petersen R, Florez ID, Izcovich A, et al. GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 2020; 371: m3900. https://doi.org/10.1136/bmj.m3900

Article  PubMed  Google Scholar 

Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 2020; 119: 126–35. https://doi.org/10.1016/j.jclinepi.2019.10.014

Article  PubMed  Google Scholar 

Bochaton T, Huot L, Elbaz M, et al. Mechanical circulatory support with the Impella® LP5.0 pump and an intra-aortic balloon pump for cardiogenic shock in acute myocardial infarction: the IMPELLA-STIC randomized study. Arch Cardiovasc Dis 2020; 113: 237–43. https://doi.org/10.1016/j.acvd.2019.10.005

Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW, TandemHeart Investigators Group. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152: e1–8. https://doi.org/10.1016/j.ahj.2006.05.031

Caldicott LD, Hawley K, Heppell R, Woodmansey PA, Channer KS. Intravenous enoximone or dobutamine for severe heart failure after acute myocardial infarction: a randomized double-blind trial. Eur Heart J 1993; 14: 696–700. https://doi.org/10.1093/eurheartj/14.5.696

CAS  Article  PubMed  Google Scholar 

De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010; 362: 779–89. https://doi.org/10.1056/nejmoa0907118

Article  PubMed  Google Scholar 

Fuhrmann JT, Schmeisser A, Schulze MR, et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med 2008; 36: 2257–66. https://doi.org/10.1097/ccm.0b013e3181809846

CAS  Article  PubMed  Google Scholar 

Husebye T, Eritsland J, Müller C, et al. Levosimendan in acute heart failure following primary percutaneous coronary intervention-treated acute ST-elevation myocardial infarction. Results from the LEAF trial: a randomized, placebo-controlled study. Eur J Heart Fail 2013; 15: 565–72. https://doi.org/10.1093/eurjhf/hfs215

Jia Z, Guo M, Zhang YQ, Liang HQ, Zhang LY, Song Y. Efficacy of intravenous levosimendan in patients with heart failure complicated by acute myocardial infarction. Cardiology 2014; 128: 195-201. https://doi.org/10.1159/000357864

CAS  Article  PubMed  Google Scholar 

Levy B, Clere-Jehl R, Legras A, et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018; 72: 173–82. https://doi.org/10.1016/j.jacc.2018.04.051

CAS  Article  PubMed  Google Scholar 

Mathew R, Di Santo P, Jung RG, et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med 2021; 385: 516–25. https://doi.org/10.1056/nejmoa2026845

CAS  Article  PubMed  Google Scholar 

Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 2007; 297: 1883–91. https://doi.org/10.1001/jama.297.17.1883

CAS  Article  PubMed  Google Scholar 

Moiseyev VS, Põder P, Andrejevs N, et al. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 2002; 23: 1422–32. https://doi.org/10.1053/euhj.2001.3158

Ohman EM, Nanas J, Stomel RJ, et al. Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS Trial. J Thromb Thrombolysis 2005; 19: 33–9. https://doi.org/10.1007/s11239-005-0938-0

Article  PubMed  Google Scholar 

Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017; 69: 278–87. https://doi.org/10.1016/j.jacc.2016.10.022

Article  PubMed  Google Scholar 

Prondzinsky R, Lemm H, Swyter M, et al. Intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP SHOCK Trial for attenuation of multiorgan dysfunction syndrome. Crit Care Med 2010; 38: 152–60. https://doi.org/10.1097/ccm.0b013e3181b78671

CAS  Article  PubMed 

留言 (0)

沒有登入
gif