Perioperative echocardiographic strain analysis: what anesthesiologists should know

Duncan AE, Alfirevic A, Sessler DI, Popovic ZB, Thomas JD. Perioperative assessment of myocardial deformation. Anesth Analg 2014; 118: 525–44. https://doi.org/10.1213/ane.0000000000000088

Article  PubMed  PubMed Central  Google Scholar 

Benson MJ, Silverton N, Morrissey C, Zimmerman J. Strain imaging: an everyday tool for the perioperative echocardiographer. J Cardiothorac Vasc Anesth 2020; 34: 2707–17. https://doi.org/10.1053/j.jvca.2019.11.035

Article  PubMed  Google Scholar 

Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 2013; 26: 185–91. https://doi.org/10.1016/j.echo.2012.10.008

Article  PubMed  Google Scholar 

Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23: 685–713. https://doi.org/10.1016/j.echo.2010.05.010

Article  PubMed  Google Scholar 

Fine NM, Chen L, Bastiansen PM, et al. Reference values for right ventricular strain in patients without cardiopulmonary disease: a prospective evaluation and meta-analysis. Echocardiography 2015; 32: 787–96. https://doi.org/10.1111/echo.12806

Article  PubMed  Google Scholar 

Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 2002; 106: 50–6. https://doi.org/10.1161/01.cir.0000019907.77526.75

Article  PubMed  Google Scholar 

Skubas NJ. Two-dimensional, non-Doppler strain imaging during anesthesia and cardiac surgery. Echocardiography 2009; 26: 345–53. https://doi.org/10.1111/j.1540-8175.2008.00868.x

Article  PubMed  Google Scholar 

Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2015; 16: 1–11. https://doi.org/10.1093/ehjci/jeu184

Article  CAS  PubMed  Google Scholar 

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

Article  PubMed  Google Scholar 

Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 2016; 37: 1196–207. https://doi.org/10.1093/eurheartj/ehv529

Article  PubMed  Google Scholar 

Luis SA, Chan J, Pellikka PA. Echocardiographic assessment of left ventricular systolic function: an overview of contemporary techniques, including speckle-tracking echocardiography. Mayo Clin Proc 2019; 94: 125–38. https://doi.org/10.1016/j.mayocp.2018.07.017

Article  PubMed  Google Scholar 

Hoit BD. Strain and strain rate echocardiography and coronary artery disease. Circ Cardiovasc Imaging 2011; 4: 179-90. https://doi.org/10.1161/circimaging.110.959817

Article  PubMed  Google Scholar 

Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 2011; 300: H1090–100. https://doi.org/10.1152/ajpheart.00473.2010

Article  CAS  PubMed  Google Scholar 

Bansal M, Kasliwal RR. How do I do it? Speckle-tracking echocardiography. Indian Heart J 2013; 65: 117–23. https://doi.org/10.1016/j.ihj.2012.12.004

Article  PubMed  Google Scholar 

Choi JO, Cho SW, Song YB, et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 2009; 10: 695–701. https://doi.org/10.1093/ejechocard/jep041

Article  PubMed  Google Scholar 

Biering-Sørensen T, Hoffmann S, Mogelvang R, et al. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 2014; 7: 58–65. https://doi.org/10.1161/circimaging.113.000989

Article  PubMed  Google Scholar 

Ternacle J, Berry M, Alonso E, et al. Incremental value of global longitudinal strain for predicting early outcome after cardiac surgery. Eur Heart J Cardiovasc Imaging 2013; 14: 77–84. https://doi.org/10.1093/ehjci/jes156

Article  PubMed  Google Scholar 

Kearney LG, Lu K, Ord M, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2012; 13: 827–33. https://doi.org/10.1093/ehjci/jes115

Article  CAS  PubMed  Google Scholar 

Kempny A, Diller GP, Kaleschke G, et al. Longitudinal left ventricular 2D strain is superior to ejection fraction in predicting myocardial recovery and symptomatic improvement after aortic valve implantation. Int J Cardiol 2013; 167: 2239–43. https://doi.org/10.1016/j.ijcard.2012.06.012

Article  PubMed  Google Scholar 

Sonny A, Alfirevic A, Sale S, et al. Reduced left ventricular global longitudinal strain predicts prolonged hospitalization: a cohort analysis of patients having aortic valve replacement surgery. Anesth Analg 2018; 126: 1484–93. https://doi.org/10.1213/ane.0000000000002684

Article  PubMed  PubMed Central  Google Scholar 

Ng AC, Prihadi EA, Antoni ML, et al. Left ventricular global longitudinal strain is predictive of all-cause mortality independent of aortic stenosis severity and ejection fraction. Eur Heart J Cardiovasc Imaging 2018; 19: 859-67. https://doi.org/10.1093/ehjci/jex189

Article  PubMed  Google Scholar 

Lee SH, Oh JK, Lee SA, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with preserved ejection fraction undergoing transcatheter aortic valve implantation. J Am Soc Echocardiogr 2022; 35: 947–55. https://doi.org/10.1016/j.echo.2022.04.013

Article  PubMed  Google Scholar 

Lancellotti P, Cosyns B, Zacharakis D, et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J Am Soc Echocardiogr 2008; 21: 1331–6. https://doi.org/10.1016/j.echo.2008.09.023

Article  PubMed  Google Scholar 

Florescu M, Benea DC, Rimbas RC, et al. Myocardial systolic velocities and deformation assessed by speckle tracking for early detection of left ventricular dysfunction in asymptomatic patients with severe primary mitral regurgitation. Echocardiography 2012; 29: 326–33. https://doi.org/10.1111/j.1540-8175.2011.01563.x

Article  PubMed  Google Scholar 

Witkowski TG, Thomas JD, Debonnaire PJ, et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur Heart J Cardiovasc Imaging 2013; 14: 69–76. https://doi.org/10.1093/ehjci/jes155

Article  PubMed  Google Scholar 

Prihadi EA, van der Bijl P, Dietz M, et al. Prognostic implications of right ventricular free wall longitudinal strain in patients with significant functional tricuspid regurgitation. Circ Cardiovasc Imaging 2019; 12: e008666. https://doi.org/10.1161/circimaging.118.008666

Article  PubMed  Google Scholar 

Bannehr M, Kahn U, Liebchen J, et al. Right ventricular longitudinal strain predicts survival in patients with functional tricuspid regurgitation. Can J Cardiol 2021; 37: 1086–93. https://doi.org/10.1016/j.cjca.2021.01.006

Article  PubMed  Google Scholar 

Elkaryoni A, Altibi AM, Khan MS, et al. Global longitudinal strain assessment of the left ventricle by speckle tracking echocardiography detects acute cellular rejection in orthotopic heart transplant recipients: a systematic review and meta-analysis. Echocardiography 2020; 37: 302–9. https://doi.org/10.1111/echo.14586

Article  PubMed  Google Scholar 

Kraigher-Krainer E, Shah AM, Gupta DK, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 2014; 63: 447–56. https://doi.org/10.1016/j.jacc.2013.09.052

Article  PubMed  Google Scholar 

Oikonomou EK, Kokkinidis DG, Kampaktsis PN, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol 2019; 4: 1007–18. https://doi.org/10.1001/jamacardio.2019.2952

Article  PubMed  PubMed Central  Google Scholar 

Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 2011; 107: 1375–80. https://doi.org/10.1016/j.amjcard.2011.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plack DL, Royer O, Couture EJ, Nabzdyk CG. Sepsis-induced cardiomyopathy reviewed: The case for early consideration of mechanical support. J Cardiothorac Vasc Anesth 2022; 36: 3916–26. https://doi.org/10.1053/j.jvca.2022.04.025

Article  PubMed  Google Scholar 

Orde SR, Pulido JN, Masaki M, et al. Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 2014; 18: R149. https://doi.org/10.1186/cc13987

Article  PubMed  PubMed Central  Google Scholar 

Sanfilippo F, Corredor C, Fletcher N, et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit Care 2018; 22: 183. https://doi.org/10.1186/s13054-018-2113-y

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif