Synergistic interaction of cuminaldehyde and tobramycin: a potential strategy for the efficient management of biofilm caused by Pseudomonas aeruginosa

Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36:869–888

PubMed  PubMed Central  CAS  Article  Google Scholar 

Chanda W, Joseph TP, Padhiar AA, Guo X, Min L, Wang W, Lolokote S, Ning A, Cao J, Huang M, Zhong M (2017) Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp Ther Med 14:4328–4338

PubMed  PubMed Central  CAS  Google Scholar 

Chakraborty P, Dastidar DG, Paul P, Dutta S, Basu D, Sharma SR, Basu S, Sarker RK, Sen A, Sarkar A, Tribedi P (2020) Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbial 202:623–635

CAS  Article  Google Scholar 

Chatterjee S, Paul P, Chakraborty P, Das S, Sarker RK, Sarkar S, Das A, Tribedi P (2021) Cuminaldehyde exhibits potential antibiofilm activity against Pseudomonas aeruginosa involving reactive oxygen species (ROS) accumulation: a way forward towards sustainable biofilm management. 3 Biotech 11:1–12

Chen TW, Tsai KD, Yang SM, Wong HY, Liu YH, Cherng J, Chou KS, Wang YT, Cuizon J, Cherng JM (2016) Discovery of a novel anti-cancer agent targeting both topoisomerase I & II as well as telomerase activities in human lung adenocarcinoma A549 cells in vitro and in vivo: Cinnamomum verum component cuminaldehyde. Curr Cancer Drug Targets 16:796–806

PubMed  CAS  Article  Google Scholar 

Clinical and Laboratory Standards Institute (2019) Performance standards for antimicrobial susceptibility testing (supplement M100), 29th ed, Clinical and Laboratory Standards Institute, Wayne, PA

Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 6:23347

PubMed  PubMed Central  CAS  Article  Google Scholar 

Dey P, Parai D, Banerjee M, Hossain ST, Mukherjee SK (2020) Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. Int J Med Microbiol 310:151410

PubMed  CAS  Article  Google Scholar 

Dhondikubeer R, Bera S, Zhanel GG, Schweizer F (2012) Antibacterial activity of amphiphilic tobramycin. J Antibiot 65:495–498

CAS  Article  Google Scholar 

Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

PubMed  PubMed Central  Article  Google Scholar 

Dryden MS, Cooke J, Salib RJ, Holding RE, Biggs T, Salamat AA, Allan RN, Newby RS, Halstead F, Oppenheim B, Hall T, Cox SC, Grover LM, Al-Hindi Z, Novak-Frazer L, Richardson MD (2017) Reactive oxygen: a novel antimicrobial mechanism for targeting biofilm-associated infection. J Glob Antimicrob Resist 8:186–191

PubMed  Article  Google Scholar 

Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9:e111289

PubMed  PubMed Central  Article  Google Scholar 

Goel S, Mishra P (2018) Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol 102:1955–1967

PubMed  CAS  Article  Google Scholar 

Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention - a journey to break the wall: a review. Arch Microbiol 198:1–15

PubMed  CAS  Article  Google Scholar 

Habash MB, Goodyear MC, Park AJ, Surette MD, Vis EC, Harris RJ, Khursigara CM (2019) Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 61:e00415-e417

Google Scholar 

Jafri H, Banerjee G, Khan MSA, Ahmad I, Abulreesh HH, Althubiani AS (2020) Synergistic interaction of eugenol and antimicrobial drugs in eradication of single and mixed biofilms of Candida albicans and Streptococcus mutans. AMB Express 10:1–9

Google Scholar 

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11

PubMed  Article  Google Scholar 

Joo HS, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19:1503–1513

PubMed  PubMed Central  CAS  Article  Google Scholar 

Khan F, Lee JW, Pham DTN, Lee JH, Kim HW, Kim YK, Kim YM (2020) Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 104:799–816

PubMed  CAS  Article  Google Scholar 

Li H, Zhang M, Addo KA, Yu Y, Xiao X (2022) Action mode of cuminaldehyde against Staphylococcus aureus and its application in sauced beef. LWT 155:112924

CAS  Article  Google Scholar 

Mah TF (2012) Biofilm-Specific Antibiotic Resistance Future Microbial 7:1061–1072

CAS  Google Scholar 

Maiden MM, Zachos MP, Waters CM (2019) Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front Microbiol 10:1348

PubMed  PubMed Central  Article  Google Scholar 

Miki T, Hardt WD (2013) Outer membrane permeabilization is an essential step in the killing of gram-negative bacteria by the lectin RegIIIβ. PLoS ONE 8:e69901

PubMed  PubMed Central  CAS  Article  Google Scholar 

Mishra R, Panda AK, Mandal DS, Shakeel M, Bisht SS, Khan J (2020) Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 11:566325

PubMed  PubMed Central  Article  Google Scholar 

Monteiro-Neto V, de Souza CD, Gonzaga LF, da Silveira BC, Sousa NCF, Pontes JP, Santos DM, Martins WC, Pessoa JFV, CarvalhoJúnior AR, Almeida VSS, de Oliveira NMT, de Araújo TS, Maria-Ferreira D, Mendes SJF, Ferro TAF, Fernandes ES (2020) Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS ONE 15:e0232987

PubMed  PubMed Central  CAS  Article  Google Scholar 

Omari Z, Kazunori S, Sabti M, Bejaoui M, Hafidi A, Gadhi C, Isoda H (2021) Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice. Aging (albany NY) 13:1671–1685

CAS  Article  Google Scholar 

Paul P, Das S, Chatterjee S, Shukla A, Chakraborty P, Sarkar S, Maiti D, Das A, Tribedi P (2021) 1,4-Naphthoquinone disintegrates the pre-existing biofilm of Staphylococcus aureus by accumulating reactive oxygen species. Arch Microbiol 203:4981–4992

PubMed  CAS  Article  Google Scholar 

Qayyum S, Oves M, Khan AU (2017) Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE 12:e0181363

PubMed  PubMed Central  Article  Google Scholar 

Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, Tanaka SK (1999) Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 43:2877–2880

PubMed  PubMed Central  CAS  Article  Google Scholar 

Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979–5987

PubMed  CAS  Article  Google Scholar 

Tré-Hardy M, Nagant C, El Manssouri N, Vanderbist F, Traore H, Vaneechoutte M, Dehaye JP (2010) Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob Agents Chemother 54:4409–4415

PubMed  PubMed Central  Article  Google Scholar 

Vale J, Ribeiro M, Abreu AC, Soares-Silva I, Simões M (2019) The use of selected phytochemicals with EDTA against Escherichia coli and Staphylococcus epidermidis single- and dual-species biofilms. Lett Appl Microbiol 68:313–320

PubMed  CAS  Article  Google Scholar 

Vestergaard M, Paulander W, Marvig RL, Clasen J, Jochumsen N, Molin S, Jelsbak L, Ingmer H, Folkesson A (2016) Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents 47:48–55

PubMed  CAS  Article  Google Scholar 

Wang TY, Libardo MDJ, Angeles-Boza AM, Pellois JP (2017) Membrane oxidation in cell delivery and cell killing applications. ACS Chem Biol 12:1170–1182

PubMed  PubMed Central  CAS  Article  Google Scholar 

Weinstein ZB, Kuru N, Kiriakov S, Palmer AC, Khalil AS, Clemons PA, Zaman MH, Roth FP, Cokol M (2018) Modeling the impact of drug interactions on therapeutic selectivity. Nat Commun 9:1–9

CAS  Article  Google Scholar 

Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

PubMed  CAS  Article  Google Scholar 

Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–1717

PubMed  CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif