Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers

Andrade-Linares, D.R., Veresoglou, S.D., Rillig, M.C., 2016. Temperature priming and memory in soil filamentous fungi. Fungal Ecology 21, 10–15.

Article  Google Scholar 

Anthony, M.A., Bender, S.F., van der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America 120, e2304663120.

Article  CAS  Google Scholar 

Antibus, R.K., Sinsabaugh, R.L., 1993. The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3, 137–144.

Article  CAS  Google Scholar 

Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J., Eichlerová, I., 2013. Estimation of fungal biomass in forest litter and soil. Fungal Ecology 6, 1–11.

Article  Google Scholar 

Bar-On, Y.M., Phillips, R., Milo, R., 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America 115, 6506–6511.

Article  CAS  Google Scholar 

Barajas-Aceves, M., Hassan, M., Tinoco, R., Vazquez-Duhalt, R., 2002. Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods 50, 227–236.

Article  CAS  Google Scholar 

Brondz, I., Høiland, K., Ekeberg, D., 2004. Multivariate analysis of fatty acids in spores of higher basidiomycetes: a new method for chemotaxonomical classification of fungi. Journal of Chromatography B 800, 303–307.

Article  CAS  Google Scholar 

Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience 16, 115–122.

Article  CAS  Google Scholar 

Camenzind, T., Philipp Grenz, K., Lehmann, J., Rillig, M.C., 2021. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters 24, 208–218.

Article  Google Scholar 

Camenzind, T., Weimershaus, P., Lehmann, A., Aguilar-Trigueros, C., Rillig, M.C., 2022. Soil fungi invest into asexual sporulation under resource scarcity, but trait spaces of individual isolates are unique. Environmental Microbiology 24, 2962–2978.

Article  CAS  Google Scholar 

Canarini, A., Fuchslueger, L., Schnecker, J., Metze, D., Nelson, D. B., Kahmen, A., Watzka, M., Pötsch, E.M., Schaumberger, A., Bahn, M., Richter, A., 2023. Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions. bioRxiv, DOI: https://doi.org/10.1101/2023.10.23.563577.

Charcosset, J.Y., Chauvet, E., 2001. Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes. Applied and Environmental Microbiology 67, 2051–2055.

Article  CAS  Google Scholar 

Chen, C., Chen, X.L., Chen, H.Y.H., 2023. Mapping N deposition impacts on soil microbial biomass across global terrestrial ecosystems. Geoderma 433, 116429.

Article  CAS  Google Scholar 

Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, eaav0550.

Article  CAS  Google Scholar 

Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., Clark, I.M., Pelletier, E., Hirsch, P.R., Meyer, F., Gilbert, J.A., Le Paslier, D., Simonet, P., Vogel, T.M., 2012. Structure, fluctuation and magnitude of a natural grassland soil metagenome. The ISME Journal 6, 1677–1687.

Article  CAS  Google Scholar 

Djajakirana, G., Joergensen, R.G., Meyer, B., 1996. Ergosterol and microbial biomass relationship in soil. Biology and Fertility of Soils 22, 299–304.

Article  CAS  Google Scholar 

Domsch, K.H., Gams, W., Anderson, T.H., 2007. Compendium of Soil Fungi. 2nd ed. Eching: IHW-Verlag.

Google Scholar 

Ekblad, A., Mikusinska, A., Agren, G.I., Menichetti, L., Wallander, H., Vilgalys, R., Bahr, A., Eriksson, U., 2016. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytologist 211, 874–885.

Article  CAS  Google Scholar 

Federle, T.W., 1986. Microbial Distribution in Soil - New Techniques. In: Megusar, F., Gantar, M., eds. Perspectives in Microbial Ecology. Ljulbljana: Slovene Society for Microbiology, 493–498.

Google Scholar 

Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71, 4117–4120.

Article  CAS  Google Scholar 

Frostegård, Å., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22, 59–65.

Article  Google Scholar 

Frostegård, Å., Tunlid, A., Bååth, E., 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods 14, 151–163.

Article  Google Scholar 

Frostegård, A., Tunlid, A., Bååth, E., 1993. Phospholipid fatty-acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy-metals. Applied and Environmental Microbiology 59, 3605–3617.

Article  Google Scholar 

Frostegård, A., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry 43, 1621–1625.

Article  Google Scholar 

Gorka, S., Darcy, S., Horak, J., Imai, B., Mohrlok, M., Salas, E., Richter, A., Schmidt, H., Wanek, W., Kaiser, C., Canarini, A., 2023. Beyond PLFA: concurrent extraction of neutral and glycolipid fatty acids provides new insights into soil microbial communities. Soil Biology and Biochemistry 187, 109205.

Article  CAS  Google Scholar 

Green, C.T., Scow, K.M., 2000. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal 8, 126–141.

Article  CAS  Google Scholar 

Grimmett, I.J., Shipp, K.N., Macneil, A., Bärlocher, F., 2013. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecology 6, 493–500.

Article  Google Scholar 

He, L.Y., Lipson, D.A., Mazza Rodrigues, J.L., Mayes, M., Björk, R. G., Glaser, B., Thornton, P., Xu, X.F., 2021. Dynamics of fungal and bacterial biomass carbon in natural ecosystems: site-level applications of the CLM-microbe model. Journal of Advances in Modeling Earth Systems 13, e2020MS002283.

Article  Google Scholar 

Heaton, L.L.M., Jones, N.S., Fricker, M.D., 2016. Energetic constraints on fungal growth. The American Naturalist 187, E27–E40.

Article  Google Scholar 

Hsieh, C.W.C., Cannella, D., Jørgensen, H., Felby, C., Thygesen, L. G., 2014. Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry 62, 3800–3805.

Article  CAS  Google Scholar 

Hungate, B.A., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P., van Gestel, N., Koch, B.J., Liu, C.M., McHugh, T.A., Marks, J.C., Morrissey, E.M., Price, L.B., 2015. Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology 81, 7570–7581.

Article  CAS  Google Scholar 

Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils 54, 559–568.

Article  CAS  Google Scholar 

Joergensen, R.G., 2022. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils 58, 1–6.

Article  CAS  Google Scholar 

Joergensen, R.G., Emmerling, C., 2006. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of Plant Nutrition and Soil Science 169, 295–309.

Article  CAS  Google Scholar 

Joergensen, R.G., Wichern, F., 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry 40, 2977–2991.

Article  CAS  Google Scholar 

Junicke, H., Abbas, B., Oentoro, J., van Loosdrecht, M., Kleerebezem, R., 2014. Absolute quantification of individual biomass concentrations in a methanogenic coculture. AMB Express 4, 35.

Article  Google Scholar 

Keck, F., Rimet, F., Bouchez, A., Franc, A., 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution 6, 2774–2780.

Article  Google Scholar 

Klamer, M., Bååth, E., 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biology and Biochemistry 36, 57–65.

Article  CAS  Google Scholar 

Klein, D.A., Paschke, M.W., 2004. Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microbial Ecology 47, 224–235.

Article  CAS  Google Scholar 

Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich, T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology 7, 1524.

Article  Google Scholar 

Lavrinienko, A., Jernfors, T., Koskimäki, J.J., Pirttilä, A.M., Watts, P. C., 2021. Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology 29, 19–27.

Article  CAS  Google Scholar 

Leckie, S.E., Prescott, C.E., Grayston, S.J., Neufeld, J.D., Mohn, W. W., 2004. Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biology and Biochemistry 36, 529–532.

Article  CAS  Google Scholar 

Lehmann, A., Zheng, W.S., Soutschek, K., Roy, J., Yurkov, A.M., Rillig, M.C., 2019. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports 9, 14152.

Article  Google Scholar 

Lewe, N., Hermans, S., Lear, G., Kelly, L.T., Thomson-Laing, G., Weisbrod, B., Wood, S.A., Keyzers, R.A., Deslippe, J.R., 2021. Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data. Journal of Microbiological Methods 188, 106271.

Article  CAS  Google Scholar 

Li, J., Wang, X., Wu, J.H., Sun, Y.X., Zhang, Y.Y., Zhao, Y.F., Huang, Z., Duan, W.H., 2023. Climate and geochemistry at different altitudes influence soil fungal community aggregation patterns in alpine grasslands. Science of the Total Environment 881, 163375.

Article  CAS  Google Scholar 

Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25, 3578–3590.

Article 

留言 (0)

沒有登入
gif