Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury

Perrouin-Verbe B, Lefevre C, Kieny P, Gross R, Reiss B, Le Fort M (2021) Spinal cord injury: a multisystem physiological impairment/dysfunction. Rev Neurol (Paris) 177(5):594–605. https://doi.org/10.1016/j.neurol.2021.02.385

CAS  Article  Google Scholar 

Huang H, Young W, Skaper S, Chen L, Moviglia G, Saberi H, Al-Zoubi Z, Sharma HS et al (2020) Clinical neurorestorative therapeutic guidelines for spinal cord injury (IANR/CANR version 2019). J Orthop Translat 20:14–24. https://doi.org/10.1016/j.jot.2019.10.006

Article  PubMed  Google Scholar 

Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK et al (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207533

Hachem LD, Fehlings MG (2021) Pathophysiology of spinal cord injury. Neurosurg Clin N Am 32(3):305–313. https://doi.org/10.1016/j.nec.2021.03.002

Article  PubMed  Google Scholar 

Liu X, Zhang Y, Wang Y, Qian T (2021) Inflammatory response to spinal cord injury and its treatment. World Neurosurg 155:19–31. https://doi.org/10.1016/j.wneu.2021.07.148

Article  PubMed  Google Scholar 

Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J (2021) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109. https://doi.org/10.1016/j.jare.2020.08.004

CAS  Article  PubMed  Google Scholar 

Kreydin E, Welk B, Chung D, Clemens Q, Yang C, Danforth T, Gousse A, Kielb S et al (2018) Surveillance and management of urologic complications after spinal cord injury. World J Urol 36(10):1545–1553. https://doi.org/10.1007/s00345-018-2345-0

Article  PubMed  Google Scholar 

Sueda T, Takahashi S (2018) Spinal cord injury as a complication of thoracic endovascular aneurysm repair. Surg Today 48(5):473–477. https://doi.org/10.1007/s00595-017-1588-5

Article  PubMed  Google Scholar 

Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

Article  PubMed  PubMed Central  Google Scholar 

Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li Y, Sheng S et al (2020) Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci 16(12):2042–2050. https://doi.org/10.7150/ijbs.45467

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F et al (2021) CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 11(1):e269. https://doi.org/10.1002/ctm2.269

CAS  Article  PubMed  Google Scholar 

Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020) Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 10:112. https://doi.org/10.1186/s13578-020-00475-3

Article  PubMed  PubMed Central  Google Scholar 

Lin L, Lin H, Bai S, Zheng L, Zhang X (2018) Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochem Int 115:80–84. https://doi.org/10.1016/j.neuint.2018.02.007

CAS  Article  PubMed  Google Scholar 

Lv C, Zhang T, Li K, Gao K (2020) Bone marrow mesenchymal stem cells improve spinal function of spinal cord injury in rats via TGF-beta/Smads signaling pathway. Exp Ther Med 19(6):3657–3663. https://doi.org/10.3892/etm.2020.8640

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Lian XH, Liao LY, Liu YT, Liu SL, Gao Q (2019) Transplantation of bone marrow mesenchymal stem cells alleviates spinal cord injury via inhibiting Notch signaling. Eur Rev Med Pharmacol Sci 23(3 Suppl):31–38. https://doi.org/10.26355/eurrev_201908_18625

CAS  Article  PubMed  Google Scholar 

Liu X, Xu W, Zhang Z, Liu H, Lv L, Han D, Liu L, Yao A et al (2020) Vascular endothelial growth factor-transfected bone marrow mesenchymal stem cells improve the recovery of motor and sensory functions of rats with spinal cord injury. Spine 45(7):E364–E372. https://doi.org/10.1097/BRS.0000000000003333

Article  PubMed  Google Scholar 

Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z et al (2022) Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 17(1):194–202. https://doi.org/10.4103/1673-5374.314323

Article  PubMed  Google Scholar 

Sheng Y, Zhou X, Wang J, Shen H, Wu S, Guo W, Yang Y (2021) MSC derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J Cell Mol Med 25(21):10268–10278. https://doi.org/10.1111/jcmm.16965

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y et al (2021) Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote functional healing after spinal cord injury. Front Cell Neurosci 15:725573. https://doi.org/10.3389/fncel.2021.725573

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xin W, Qiang S, Jianing D, Jiaming L, Fangqi L, Bin C, Yuanyuan C, Guowang Z et al (2021) Human bone marrow mesenchymal stem cell-derived exosomes attenuate blood-spinal cord barrier disruption via the TIMP2/MMP pathway after acute spinal cord injury. Mol Neurobiol 58(12):6490–6504. https://doi.org/10.1007/s12035-021-02565-w

CAS  Article  PubMed  Google Scholar 

Dilsiz N (2022) Hallmarks of exosomes. Future Sci OA 8(1):FSO764. https://doi.org/10.2144/fsoa-2021-0102

CAS  Article  PubMed  Google Scholar 

Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J et al (2021) Long non-coding RNAs and circular RNAs: insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci 14:745066. https://doi.org/10.3389/fnmol.2021.745066

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bie F, Wang K, Xu T, Yuan J, Ding H, Lv B, Liu Y, Lan M (2021) The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother 141:111826. https://doi.org/10.1016/j.biopha.2021.111826

CAS  Article  PubMed  Google Scholar 

Fanale D, Taverna S, Russo A, Bazan V (2018) Circular RNA in exosomes. Adv Exp Med Biol 1087:109–117. https://doi.org/10.1007/978-981-13-1426-1_9

CAS  Article  PubMed  Google Scholar 

Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W et al (2015) Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med 4(5):494–502. https://doi.org/10.5966/sctm.2014-0206

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kehl LJ, Fairbanks CA, Laughlin TM, Wilcox GL (1997) Neurogenesis in postnatal rat spinal cord: a study in primary culture. Science 276(5312):586–589. https://doi.org/10.1126/science.276.5312.586

CAS  Article  PubMed  Google Scholar 

Luo Z, Wu F, Xue E, Huang L, Yan P, Pan X, Zhou Y (2019) Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1alpha in injured neuronal cells derived exosomes culture system. Cell Death Dis 10(2):134. https://doi.org/10.1038/s41419-019-1410-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, Gong F, Jiang W (2019) Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate cancer by downregulating TFF3. Mol Ther Nucleic Acids 18:232–244. https://doi.org/10.1016/j.omtn.2019.08.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang N, Yang Y, Pang M, Du C, Chen Y, Li S, Tian Z, Feng F et al (2020) MicroRNA-135a-5p promotes the functional recovery of spinal cord injury by targeting SP1 and ROCK. Mol Ther Nucleic Acids 22:1063–1077. https://doi.org/10.1016/j.omtn.2020.08.035

CAS  Article  PubMed  PubMed Central  Google Scholar 

Luo W, Wang Y, Lin F, Liu Y, Gu R, Liu W, Xiao C (2020) Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int J Nanomed 15:10113–10125. https://doi.org/10.2147/IJN.S282985

CAS  Article  Google Scholar 

Luo Y, Xu T, Liu W, Rong Y, Wang J, Fan J, Yin G, Cai W (2021) Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. Int J Neurosci 131(2):170–182. https://doi.org/10.1080/00207454.2020.1734598

CAS  Article  PubMed  Google Scholar 

Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, Zhang Z, Hou B et al (2017) The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun 64:195–207. https://doi.org/10.1016/j.bbi.2017.03.006

CAS  Article  PubMed  Google Scholar 

Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. https://doi.org/10.1089/neu.1995.12.1

CAS  Article  PubMed  Google Scholar 

Li TE, Wang S, Shen XT, Zhang Z, Chen M, Wang H, Zhu Y, Xu D et al (2020) PKM2 drives hepatocellular carcinoma progression by inducing immunosuppressive microenvironment. Front Immunol 11:589997. https://doi.org/10.3389/fimmu.2020.589997

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li GQ, Fang YX, Liu Y, Meng FR, Wu X, Zhang CW, Zhang Y, Liu YQ et al (2021) MicroRNA-21 from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate rheumatoid arthritis. Ther Adv Chronic Dis 12:20406223211007369. https://doi.org/10.1177/20406223211007369

CAS  Article  PubMed 

留言 (0)

沒有登入
gif