Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method

Gullett JM, Tweedell RE, Kanneganti TD (2022) It's All in the PAN: crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by panoptosis underlying the totality of cell death-associated biological effects. Cells 11(9):1495

Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, et al (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1(2):aag2045

Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P et al (2021) Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons 5(7):568–580

PubMed  Article  Google Scholar 

Kesavardhana S, Malireddi RKS, Burton AR, Porter SN, Vogel P, Pruett-Miller SM et al (2020) The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem 295(24):8325–8330

CAS  PubMed  PubMed Central  Article  Google Scholar 

Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, et al (2020) ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem 295(52):18276–18283

Christgen S, Zhen, M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, Place DE, Briard B, Sharma BR, Tuladhar S, Samir P, Burton A, Kanneganti T-D (2020) Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol 10:237

Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, et al (2020) Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI insight 5(12):e136720

Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, Burton A, et al (2020) Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem 295(41):14040–14052

Malireddi RK, Ippagunta S, Lamkanfi M, Kanneganti TD (2010) Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol 185(6):3127–3130

CAS  PubMed  Article  Google Scholar 

Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, et al (2020) Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity–independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med 217(3):jem.20191644

Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD (2020) RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis. Immunohorizons 4(12):789–796

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zheng M, Karki R, Vogel P, Kanneganti TD (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181(3):674–87.e13

CAS  PubMed  PubMed Central  Article  Google Scholar 

Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P et al (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(1):149–68.e17

CAS  PubMed  Article  Google Scholar 

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD (2021) AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597(7876):415–419

Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN et al (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37(3):109858

CAS  PubMed  PubMed Central  Article  Google Scholar 

Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, et al (2022) ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol 7(74):eabo6294

Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS, Mishra A et al (2017) ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J Exp Med 214(8):2217–2229

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

CAS  PubMed  Article  Google Scholar 

Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

CAS  PubMed  Article  Google Scholar 

Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

CAS  PubMed  Article  Google Scholar 

Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A 102(49):17545–17550

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

CAS  PubMed  Article  Google Scholar 

Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85(6):803–815

CAS  PubMed  Article  Google Scholar 

Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85(6):817–827

CAS  PubMed  Article  Google Scholar 

Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

CAS  PubMed  Article  Google Scholar 

Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

CAS  PubMed  Article  Google Scholar 

Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274(2):1156–1163

CAS  PubMed  Article  Google Scholar 

Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflamm 15(1):199

Article  Google Scholar 

Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

CAS  PubMed  Article  Google Scholar 

Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K et al (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18(1):100

PubMed  PubMed Central  Article  Google Scholar 

Nailwal H, Chan FK (2019) Necroptosis in anti-viral inflammation. Cell Death Differ 26(1):4–13

CAS  PubMed  Article  Google Scholar 

Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

CAS  PubMed  Article  Google Scholar 

Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M et al (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431

CAS  PubMed  Article  Google Scholar 

Man SM, Hopkins LJ, Nugent E, Cox S, Glück IM, Tourlomousis P et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111(20):7403–7408

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen X, Zhu R, Zhong J, Ying Y, Wang W, Cao Y et al (2022) Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death. Nat Cell Biol 24(4):471–482

CAS  PubMed  Article  Google Scholar 

Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE (2013) Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J Immunol 191(10):5239–5246

CAS  PubMed  Article  Google Scholar 

Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR et al (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20(9):1149–1160

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS et al (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19(10):1709–1721

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang Y, Kanneganti TD (2021) From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 19:4641–4657

CAS  PubMed  PubMed Central  Article  Google Scholar 

Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367

CAS  PubMed  PubMed Central  Article

留言 (0)

沒有登入
gif