Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models

Sangster J (1989) Octanol–water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111–1227

CAS  Article  Google Scholar 

Ulrich N, Goss KU, Ebert A (2021) Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation. Commun Chem 90:4

Google Scholar 

Işık M, Bergazin TD, Fox T, Rizzi A, Chodera JD, Mobley DL (2020) Assessing the accuracy of octanol–water partition coefficient predictions in the SAMPL6 Part II log P challenge. J Comput Aided Mol Des 34:335–370

Bergazin TD, Tielker N, Zhang Y, Mao J, Gunner MR, Francisco K, Ballatore C, Kast SM, Mobley DL (2021) Evaluation of log P, pKa, and log D predictions for the SAMPL7 blind challenge. J. Comput.-Aided Mol. Des. 35, 771–802

Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind predictions of cyclohexane–water distribution coefficients from the SAMPL5 challenge. J Comput Aided Mol Des 30:927–944

Işık M, Rustenburg AS, Rizzi A, Gunner MR, Mobley DL, Chodera JD (2021) Overview of the SAMPL6 p \(_}\) challenge: evaluating small molecule microscopic and macroscopic p\(_}\) predictions. J Comput Aided Mol Des 35:131–166

Marenich AV, Cramer CJ, Truhlar DG (2013) Generalized Born Solvation Model SM12. J Chem Theory Comput 9:609–620

CAS  Article  Google Scholar 

Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges. J Chem Theory Comput 3:2011–2033

CAS  Article  Google Scholar 

Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

CAS  Article  Google Scholar 

SAMPL7 logP Prediction Challenge. https://github.com/samplchallenges/SAMPL7/tree/master/physical_property. Accessed 11 Mar 2021

OECD (1995) Test No. 107: partition coefficient (n-octanol/water): Shake Flask Method. https://doi.org/10.1787/9789264069626-en. https://www.oecd-ilibrary.org/content/publication/9789264069626-en

Ouimet JA, Paluch AS (2020) Predicting octanol/water partition coefficients for the SAMPL6 challenge using the SM12, SM8, and SMD solvation models. J Comput Aided Mol Des 34:575–588

Sørensen JM, Arlt W (eds) (1979) Liquid–liquid equilibrium data collection, part 1: binary systems. DECHEMA, Frankfurt am Main

Google Scholar 

Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543

CAS  Article  Google Scholar 

Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aid Mol Des 24:317–333

Jindal A, Vasudevan S (2017) Conformation of ethylene glycol in the liquid state: intra- versus intermolecular Interactions. J Phys Chem B 121:5595–5600

CAS  Article  Google Scholar 

Cramer CJ, Truhlar DG (1994) Quantum chemical conformational analysis of 1,2-ethanediol: correlation and solvation effects on the tendency to form internal hydrogen bonds in the gase phase and in aqueous solution. J Am Chem Soc 116:3892–3900

CAS  Article  Google Scholar 

Klimovich PV, Mobley DL (2010) Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. J Comput Aid Mol Des 24:307–316

Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting Small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51:769–779

CAS  Article  Google Scholar 

Chamberlin AC, Cramer CJ, Truhlar DG (2008) Performance of SM8 on a test to predict small-molecule solvation free energies. J. Phys Chem B 112:8651–8655

CAS  Article  Google Scholar 

Jones MR, Brooks BR (2020) Quantum chemical predictions of water-octanol partition coefficients applied to the SAMPL6 logP blind challenge. J Comput Aid Mol Des 34:485–493

Guan D, Lui R, Matthews S (2020) LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules. J Comput Aid Mol Des 34:511–522

Gunner MR, Murakami T, Rustenburg AS, Işık M, Chodera JD (2020) Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states. J Comput Aid Mol Des 34:561–573

Ho J (2015) Are thermodynamic cycles necessary for continuum solvent calculation of pK\(_}\)s and reduction potentials? Phys Chem Chem Phys 17:2895–2868

Article  Google Scholar 

Thapa B, Schlegel HB (2017) Improved pK\(_}\) Prediction of substituted alcohols, phenols, and hydroperoxides in aqueous medium using density functional theory and a cluster-continuum solvation model. J Phys Chem A 121:4698–4706

CAS  Article  Google Scholar 

Mirzaei S, Ivanov MV, Timerghazin QK (2019) Improving performance of the SMD solvation model: bondi radii improve predicted aqueous solvation free energies of ions and pK\(_}\) values of thiols. J Phys Chem A 123:9498–9504

CAS  Article  Google Scholar 

Lian P, Johnston RC, Parks JM, Smith JC (2018) Quantum chemical calculation of pK\(_}\)s of environmentally relevant functional groups: carboxylic acids, amines, and thiols in aqueous solution. J Phys Chem A 122:4366–4374

CAS  Article  Google Scholar 

Rodriguez SA, Baumgartner MT (2020) Betanidin pK\(_}\) prediction using DFT methods. ACS Omega 5:13751–13759

CAS  Article  Google Scholar 

Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

Google Scholar 

Pliego JR Jr, Riveros JM (2002) Theoretical calculation of pK\(_}\) using the cluster-continuum model. J Phys Chem A 106:7434–7439

CAS  Article  Google Scholar 

Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110:2493–9499

CAS  Article  Google Scholar 

Alongi KS, Shields GC (2010) Theoretical calculations of acid dissociation constants: a review article. Annu Rep Comput Chem 6:113–138

CAS  Article  Google Scholar 

Thapa B, Schlegel HB (2015) Calculations of pKa’s and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J Phys Chem A 119:5134–5144

CAS  Article  Google Scholar 

Thapa B, Schlegel HB (2016) Theoretical calculation of pK\(_}\)’s of selenols in aqueous solution using an implicit solvation model and explicit water molecules. J Phys Chem A 120:8916–8922

CAS  Article  Google Scholar 

Thapa B, Schlegel HB (2016) Density functional theory calculation of pK\(_}\)’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A 120:5726–5735

CAS  Article  Google Scholar 

Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

Daylight Chemical Information Systems, Inc. https://www.daylight.com/. Accessed 11 Mar 2021

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchinson GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33

Article  Google Scholar 

Open Babel: The Open Source Chemistry Toolbox. http://openbabel.org/wiki/Main_Page. Accessed 11 Mar 2021

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

CAS  Article  Google Scholar 

Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 34:3181–3184

Article  Google Scholar 

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2019) Gaussian 16. Revision C.01. Gaussian, Inc., Wallingford

Zhao Y, Truhlar DG (2008) The M06 theory of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

CAS  Article  Google Scholar 

Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kús T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL III, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA Jr, Dop H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent A, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Pieniazek PA, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sergueev N, Sharada SM, Sharmaa S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJW, Tsuchimochi T, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Vanovschi V, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhou Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard WA III, Gordon MS, Hehre WJ, Klamt A, Schaefer HF III, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xua X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113:184–215

CAS  Article  Google Scholar 

Q-CHEM. http://www.q-chem.com/. Accessed 11 Mar 2021

SAMPL7 Physical Property pKa Microstates. https://github.com/samplchallenges/SAMPL7/commits/master/physical_property/pKa/microstates. (accessed March 11, 2021)

Fındık BK, Haslak ZP, Arslan E, Aviyente V (2021) SAMPL7 blind challenge: quantum-mechanical prediction of partition coefficients and acid dissociation constants for small drug-like molecules. J Comput Aid Mol Des 35:841–851

Warnau J, Wichmann K, Reinisch J (2021) COSMO-RS predictions of logP in the SAMPL7 blind challenge. J Comput Aided Mol Des 35:813–818

Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol Eng 1:101–122

CAS  Article  Google Scholar 

Ohio Supercomputer Center: Ohio Supercomputer Center (1987). http://osc.edu/ark:/19495/f5s1ph73

留言 (0)

沒有登入
gif