Advances in Biomaterials for Promoting Vascularization

Rouwkema J, Rivron NC, Van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434–41. https://doi.org/10.1016/j.tibtech.2008.04.009.

CAS  Article  PubMed  Google Scholar 

Chapla R, West JL. Hydrogel biomaterials to support and guide vascularization. Progress in Biomedical Engineering. 2021;3(1): 012002. https://doi.org/10.1088/2516-1091/abc947.

Article  Google Scholar 

Jaklenec A, Stamp A, Deweerd E, Sherwin A, Langer R. Progress in the tissue engineering and stem cell industry “are we there yet?” Tissue Eng Part B Rev. 2012;18(3):155–66. https://doi.org/10.1089/ten.TEB.2011.0553.

Article  PubMed  Google Scholar 

Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82. https://doi.org/10.1089/ten.TEB.2012.0012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937–45. https://doi.org/10.1038/nature04479.

CAS  Article  PubMed  Google Scholar 

Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol. 2000;50(1/2):1–15. https://doi.org/10.1023/a:1006493130855.

CAS  Article  PubMed  Google Scholar 

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater. 2018;3(4):389–400. https://doi.org/10.1016/j.bioactmat.2018.05.002.

Article  PubMed  PubMed Central  Google Scholar 

Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–62. https://doi.org/10.1021/nn5020787.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4. https://doi.org/10.1038/386671a0.

CAS  Article  PubMed  Google Scholar 

Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80. https://doi.org/10.1021/cr000108x.

CAS  Article  PubMed  Google Scholar 

Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. Prog Biomed Eng (Bristol). 2020;2(1). https://doi.org/10.1088/2516-1091/ab5637.

Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323–37. https://doi.org/10.1007/s10439-013-0859-6.

Article  PubMed  Google Scholar 

Brouns JEP, Dankers PYW. Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell–material interactions. Biomacromol. 2021;22(1):4–23. https://doi.org/10.1021/acs.biomac.0c00930.

CAS  Article  Google Scholar 

Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. https://doi.org/10.1038/s41392-021-00512-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, et al. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: a superior alternative to methacrylated gelatin? Mater Sci Eng, C. 2021;130. Findings from this study was one of the first of its kind to methacrylate collagen to improve mechanical properties in tissue engineered constructs. Developing more unique ways to chemicaly modify natural polymers will provide additional options for hydrogel design and incorporation into TECs.

Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin — oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107:1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.

CAS  Article  PubMed  Google Scholar 

Loureiro J, Torres AL, Neto T, Aguiar P, Barrias CC, Pinto MT, et al. Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. Mater Sci Eng, C. 2019;104: 109847. https://doi.org/10.1016/j.msec.2019.109847.

CAS  Article  Google Scholar 

Yang R, Huang J, Zhang W, Xue W, Jiang Y, Li S, et al. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohyd Polym. 2021;273: 118607. https://doi.org/10.1016/j.carbpol.2021.118607.

CAS  Article  Google Scholar 

Jiang M, Pan Y, Liu Y, Dai K, Zhang Q, Wang J. Effect of sulfated chitosan hydrogel on vascularization and osteogenesis. Carbohyd Polym. 2022;281: 119059. https://doi.org/10.1016/j.carbpol.2021.119059.

CAS  Article  Google Scholar 

Fu W, Xu P, Feng B, Lu Y, Bai J, Zhang J, et al. A hydrogel derived from acellular blood vessel extracellular matrix to promote angiogenesis. J Biomater Appl. 2019;33(10):1301–13. https://doi.org/10.1177/0885328219831055.

CAS  Article  PubMed  Google Scholar 

Dikici S, Claeyssens F, Macneil S. Decellularised baby spinach leaves and their potential use in tissue engineering applications: studying and promoting neovascularisation. J Biomater Appl. 2019;34(4):546–59. https://doi.org/10.1177/0885328219863115.

Article  PubMed  Google Scholar 

Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63(5):492–6. https://doi.org/10.1203/pdr.0b013e31816c5bc3.

CAS  Article  PubMed  Google Scholar 

Karami A, Tebyanian H, Sayyad Soufdoost R, Motavallian E, Barkhordari A, Nourani MR. Extraction and characterization of collagen with cost-effective method from human placenta for biomedical applications. World J Plast Surg. 2019;8(3):352–8. https://doi.org/10.29252/wjps.8.3.352.

Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2013;101B(1):187–99. https://doi.org/10.1002/jbm.b.32817.

CAS  Article  Google Scholar 

Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, et al. 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers (Basel). 2016;8(8). https://doi.org/10.3390/polym8080269.

Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv Healthc Mater. 2022;11(2): e2101873. https://doi.org/10.1002/adhm.202101873.

CAS  Article  PubMed  Google Scholar 

Navaei A, Rahmani Eliato K, Ros R, Migrino RQ, Willis BC, Nikkhah M. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomaterials Science. 2019;7(2):585–95. https://doi.org/10.1039/C8BM01050A.

CAS  Article  PubMed  Google Scholar 

Nikkhah M, Akbari M, Paul A, Memic A, Dolatshahi-Pirouz A, Khademhosseini A. Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. Biomaterials from Nature for Advanced Devices and Therapies. 2016;37–62.

Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107(Pt B):1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.

CAS  Article  PubMed  Google Scholar 

Litvinov RI, Weisel JW. What is the biological and clinical relevance of fibrin? Semin Thromb Hemost. 2016;42(4):333–43. https://doi.org/10.1055/s-0036-1571342.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci: Materials in Medicine. 2019;30(10). https://doi.org/10.1007/s10856-019-6318-7.

Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–61. https://doi.org/10.2147/ijn.s124671.

CAS  Article  Google Scholar 

Silva J, Bento AR, Barros D, Laundos TL, Sousa SR, Quelhas P, et al. Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta Biomater. 2017;59:243–56. https://doi.org/10.1016/j.actbio.2017.07.013.

CAS  Article  PubMed  Google Scholar 

Leu S-J, Liu Y, Chen N, Chen C-C, Lam SCT, Lau LF. Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61)*. J Biol Chem. 2003;278(36):33801–8. https://doi.org/10.1074/jbc.M305862200.

CAS  Article  PubMed  Google Scholar 

Weksler B, Romero IA, Couraud P-O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS. 2013;10(1):16. https://doi.org/10.1186/2045-8118-10-16.

Article  PubMed  PubMed Central  Google Scholar 

Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8(12):3280–94. https://doi.org/10.1039/C2SM06463D.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, et al. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13(48):56892–908. https://doi.org/10.1021/acsami.1c16481.

CAS  Article  PubMed  Google Scholar 

Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology. 2012;4(3):253–8. https://doi.org/10.4161/derm.21923.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: A versatile biomaterial in tissue engineering. Plastic and Aesthetic Research. 2017;4(12):219. https://doi.org/10.20517/2347-9264.2017.71.

Bajaj I, Singhal R. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Biores Technol. 2011;102(10):5551–61. https://doi.org/10.1016/j.biortech.2011.02.047.

CAS  Article  Google Scholar 

Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: Opportunities and challenges in biomedical applications. Chem Rev. 2018;118(14):6766–843. https://doi.org/10.1021/acs.chemrev.6b00275.

CAS 

留言 (0)

沒有登入
gif