Amyloid $$\upbeta$$ β (1–42) peptide impairs mitochondrial respiration in primary human brain microvascular endothelial cells: impact of dysglycemia and pre-senescence

Kumar A, Singh A and Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67: 195–203. 20140922. https://doi.org/10.1016/j.pharep.2014.09.004.

Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev. 2013;35:152–60. https://doi.org/10.1093/epirev/mxs012.

Article  PubMed  Google Scholar 

Chatterjee S and Mudher A. Alzheimer’s disease and type 2 diabetes: a critical assessment of the shared pathological traits. Front Neurosci 2018; 12. Review. https://doi.org/10.3389/fnins.2018.00383.

Aa R. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105. https://doi.org/10.5114/fn.2019.85929.

Article  Google Scholar 

He C, Li Q, Cui Y, Gao P, Shu W, Zhou Q, Wang L, Li L, Lu Z, Zhao Y, Ma H, Chen X, Jia H, Zheng H, Yang G, Liu D, Tepel M and Zhu Z. Recurrent moderate hypoglycemia accelerates the progression of Alzheimer’s disease through impairment of the TRPC6/GLUT3 pathway. JCI Insight 2022; 7 20220308. https://doi.org/10.1172/jci.insight.154595.

Rhee SY. Hypoglycemia and dementia. Endocrinol Metab (Seoul). 2017;32:195–9. https://doi.org/10.3803/EnM.2017.32.2.195.

Article  Google Scholar 

Steinman J, Sun H-S and Feng Z-P. Microvascular alterations in Alzheimer’s disease. Front Cell Neurosci 2021; 14. Review. https://doi.org/10.3389/fncel.2020.618986.

Scheffer S, Hermkens DMA, Weerd Lvd, Vries HEd and Daemen MJAP. Vascular hypothesis of Alzheimer disease. Arterioscler Thromb Vasc Biol 2021; 41: 1265–1283. https://doi.org/10.1161/ATVBAHA.120.311911.

Klohs J. An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegener Dis. 2019;19:109–27. https://doi.org/10.1159/000505625.

Article  PubMed  Google Scholar 

van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8(325–336):20200302. https://doi.org/10.1016/s2213-8587(19)30405-x.

CAS  Article  Google Scholar 

Wang D, Chen F, Han Z, Yin Z, Ge X and Lei P. Relationship between amyloid-β deposition and blood–brain barrier dysfunction in Alzheimer’s disease. Front Cell Neurosci 2021; 15. Review. https://doi.org/10.3389/fncel.2021.695479.

Vadukul DM, Gbajumo O, Marshall KE, Serpell LC. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-β 1–42. FEBS Lett. 2017;591:822–30. https://doi.org/10.1002/1873-3468.12590.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ. beta-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:10836–40. https://doi.org/10.1073/pnas.90.22.10836.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503. https://doi.org/10.1038/s41380-021-01249-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. Beta-amyloid(1–42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008;28:3941–6. https://doi.org/10.1523/jneurosci.0350-08.2008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, Lashuel HA, Magistretti PJ. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci. 2010;30:3326–38. https://doi.org/10.1523/jneurosci.5098-09.2010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jana M, Palencia CA, Pahan K. Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008;181:7254–62. https://doi.org/10.4049/jimmunol.181.10.7254.

CAS  Article  PubMed  Google Scholar 

Yue Q, Zhou X, Zhang Z and Hoi MPM. Murine Beta-Amyloid (1–42) Oligomers disrupt endothelial barrier integrity and VEGFR signaling via activating astrocytes to release deleterious soluble factors. Int J Mol Sci 2022; 23 20220207. https://doi.org/10.3390/ijms23031878.

Alcendor DJ. Interactions between amyloid-Β proteins and human brain pericytes: implications for the pathobiology of Alzheimer’s disease. J Clin Med 2020; 9 20200515. DOI: https://doi.org/10.3390/jcm9051490.

Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis. 2007;12:177–84. https://doi.org/10.3233/jad-2007-12208.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yao Y, Huang JZ, Chen Y, Hu HJ, Tang X, Li X. Effects and mechanism of amyloid β1-42 on mitochondria in astrocytes. Mol Med Rep. 2018;17(6997–7004):20180316. https://doi.org/10.3892/mmr.2018.8761.

CAS  Article  Google Scholar 

Marco S, Skaper SD. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett. 2006;401(219–224):20060427. https://doi.org/10.1016/j.neulet.2006.03.047.

CAS  Article  Google Scholar 

Singh Angom R, Wang Y, Wang E, Pal K, Bhattacharya S, Watzlawik JO, Rosenberry TL, Das P, Mukhopadhyay D. VEGF receptor-1 modulates amyloid β 1–42 oligomer-induced senescence in brain endothelial cells. Faseb j. 2019;33(4626–4637):20181221. https://doi.org/10.1096/fj.201802003R.

Article  Google Scholar 

Park R, Kook SY, Park JC, Mook-Jung I. Aβ1–42 reduces P-glycoprotein in the blood–brain barrier through RAGE–NF-κB signaling. Cell Death Dis. 2014;5:e1299–e1299. https://doi.org/10.1038/cddis.2014.258.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Quintana DD, Garcia JA, Anantula Y, Rellick SL, Engler-Chiurazzi EB, Sarkar SN, Brown CM, Simpkins JW. Amyloid-β causes mitochondrial dysfunction via a Ca2+-driven upregulation of oxidative phosphorylation and superoxide production in cerebrovascular endothelial cells. J Alzheimers Dis. 2020;75:119–38. https://doi.org/10.3233/jad-190964.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(1681–1689):20150428. https://doi.org/10.1161/strokeaha.115.009099.

Article  Google Scholar 

Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112:1171–88. https://doi.org/10.1161/circresaha.111.300233.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Caja S, Enríquez JA. Mitochondria in endothelial cells: sensors and integrators of environmental cues. Redox Biol. 2017;12(821–827):20170418. https://doi.org/10.1016/j.redox.2017.04.021.

CAS  Article  Google Scholar 

Sakamuri S, Sure VN, Kolli L, Liu N, Evans WR, Sperling JA, Busija DW, Wang X, Lindsey SH, Murfee WL, Mostany R and Katakam PVG. Glycolytic and oxidative phosphorylation defects precede the development of senescence in primary human brain microvascular endothelial cells. Geroscience 2022 2022/04/06. https://doi.org/10.1007/s11357-022-00550-2.

Sakamuri SS, Sure VN, Kolli L, Evans WR, Sperling JA, Bix GJ, Wang X, Atochin DN, Murfee WL, Mostany R and Katakam PV. Aging related impairment of brain microvascular bioenergetics involves oxidative phosphorylation and glycolytic pathways. J Cereb Blood Flow Metab; 0: 0271678X211069266. https://doi.org/10.1177/0271678x211069266.

Parodi-Rullán R, Sone JY and Fossati S. Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. J Alzheimers Dis 2019; 72: 1019–1039. https://doi.org/10.3233/jad-190357

Kim DK and Mook-Jung I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease. BMB Rep 2019; 52: 679–688. https://doi.org/10.5483/BMBRep.2019.52.12.282.

Rehni AK, Nautiyal N, Perez-Pinzon MA and Dave KR. Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metab Brain Dis 2015; 30: 437–447. https://doi.org/10.1007/s11011-014-9538-z.

Lamoke F, Mazzone V, Persichini T, Maraschi A, Harris MB, Venema RC, Colasanti M, Gliozzi M, Muscoli C, Bartoli M, Mollace V. Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J Neuroinflammation. 2015;12(84):20150503. https://doi.org/10.1186/s12974-015-0304-x.

Article  Google Scholar 

Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci. 2012;32:8845–54. https://doi.org/10.1523/jneurosci.6102-11.2012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cenini G, Voos W. Mitochondria as potential targets in alzheimer disease therapy: an update. Front Pharmacol. 2019;10(902):20190823. https://doi.org/10.3389/fphar.2019.00902.

CAS  Article  Google Scholar 

Abramov AY, Duchen MR. The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci. 2005;360:2309–14. https://doi.org/10.1098/rstb.2005.1766.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Akhtar MW, Sanz-Blasco S, Dolatabadi N, Parker J, Chon K, Lee MS, Soussou W, McKercher SR, Ambasudhan R, Nakamura T, Lipton SA. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat Commun. 2016;7(10242):20160108. https://doi.org/10.1038/ncomms10242.

CAS  Article  Google Scholar 

Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2:125. https://doi.org/10.4172/2329-6887.1000125.

Article  PubMed  PubMed Central  Google Scholar 

Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TE, Sutphen CL, Holtzman DM. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest. 2015;125(2463–2467):20150504. https://doi.org/10.1172/jci79742.

Article  Google Scholar 

Chao AC, Lee TC, Juo SH, Yang DI. Hyperglycemia increases the production of amyloid beta-peptide leading to decreased endothelial tight junction. CNS Neurosci Ther. 2016;22(291–297):20160204. https://doi.org/10.1111/cns.12503.

CAS  Article  Google Scholar 

Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014(137919):20140616. https://doi.org/10.1155/2014/137919.

Article  Google Scholar 

Shafiee G, Mohajeri-Tehrani M, Pajouhi M, Larijani B. The importance of hypoglycemia in diabetic patients. J Diabetes Metab Disord. 2012;11(17):20121001. https://doi.org/10.1186/2251-6581-11-17.

Article  Google Scholar 

Han E, Han KD, Lee BW, Kang ES, Cha BS, Ko SH, Lee YH. Severe hypoglycemia increases dementia risk and related mortality: a nationwide, population-based cohort study. J Clin Endocrinol Metab. 2022;107:e1976–86. https://doi.org/10.1210/clinem/dgab860.

Article  PubMed  Google Scholar 

Kim YG, Park DG, Moon SY, Jeon JY, Kim HJ, Kim DJ, Lee KW, Han SJ. Hypoglycemia and dementia risk in older patients with type 2 diabetes mellitus: a propensity-score matched analysis of a population-based cohort study. Diabetes Metab J. 2020;44(125–133):20191023. https://doi.org/10.4093/dmj.2018.0260.

Article  Google Scholar 

Lee CW, Shih YH, Wu SY, Yang T, Lin C, Kuo YM. Hypoglycemia induces tau hyperphosphorylation. Curr Alzheimer Res. 2013;10:298–308. https://doi.org/10.2174/1567205011310030009.

CAS  Article  PubMed  Google Scholar 

Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes Metab. 2021;23(338–349):20201025. https://doi.org/10.1111/dom.14220.

CAS  Article  Google Scholar 

Shi J, Xiang Y, Simpki

留言 (0)

沒有登入
gif