Benzothioate Glycoside from a terrestrial Streptomyces sp. TBRC 11511 from Thailand

Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem. 2014;6:25–64.

Google Scholar 

Arias CA, Murray BE. A new antibiotic and the evolution of resistance. N. Engl J Med. 2015;372:1168–70.

CAS  Article  Google Scholar 

Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot. 2012;65:385–95.

Article  Google Scholar 

Raja A, Prabakarana P. Actinomycetes and drug-an overview.Am J Drug Discov Dev. 2011;1:75–84.

Article  Google Scholar 

Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem. 2018;376:5.

Article  Google Scholar 

Shin B, Ahn S, Noh M, Shin J, Oh DC. Suncheonosides A-D, Benzothioate Glycosides from a Marine-Derived Streptomyces sp. J Nat Prod. 2015;78:1390–6.

CAS  Article  Google Scholar 

Mahyudin NA, Blunt JW, Cole AL, Munro MH. The isolation of a new S-methyl benzothioate compound from a marine-derived Streptomyces sp. J Biomed Biotechnol. 2012;2012:894708 https://doi.org/10.1155/2012/894708.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Birnbaum GI, Hall SR. Structure of the antibiotic griseoviridin. J Am Chem Soc. 1976;98:1926–31.

CAS  Article  Google Scholar 

Pretsch E, Clerc T, Seibl J, Simon W, editors. Tables of spectral data for structure determination of organic compounds. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 1989. p. I10 and I155.

Roslund MU, Tähtinen P, Niemitz M, Sjöholm R. Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr Res. 2008;343:101–12.

CAS  Article  Google Scholar 

Otsuka H. Iridoid mono- and diesters of D-glucopyranose from Linaria japonica. Phytochemistry 1995;39:1111–4.

CAS  Article  Google Scholar 

Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148:293–300.

Article  Google Scholar 

Saito H, Miura K. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 1963;72:619–29.

CAS  Article  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–17.

CAS  Article  Google Scholar 

Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–18.

CAS  Article  Google Scholar 

Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–24.

CAS  Article  Google Scholar 

Chutrakul C, Khaokhajorn P, Auncharoen P, Boonruengprapa T, Mongkolporn O. The potential of a fluorescent-based approach for bioassay of antifungal agents against chili anthracnose disease in Thailand. Biosci Biotechnol Biochem. 2013;77:259–65.

CAS  Article  Google Scholar 

Chutrakul C, Boonruangprapa T, Suvannakad R, Isaka M, Sirithunya P, Toojinda T, Kirtikara K. Ascherxanthone B from Aschersonia luteola, a new antifungal compound active against rice blast pathogen Magnaporthe grisea. J Appl Microbiol. 2009;107:1624–31.

CAS  Article  Google Scholar 

Changsen C, Franzblau SG, Palittapongarnpim P. Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob Agents Chemother. 2003;47:3682–87.

CAS  Article  Google Scholar 

Hunt L, Jordan M, De Jesus M, Wurm FM. GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode. Biotechnol Bioeng. 1999;65:201–5.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif