Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei

Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiol. 2019;165:1025–40.

Article  CAS  Google Scholar 

Loria R, Kers J, Joshi M. Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol. 2006;44:469–87.

Article  CAS  PubMed  Google Scholar 

Liu J, Nothias L-F, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and metabolomic analysis of the potato common scab pathogen Streptomyces scabiei. ACS Omega. 2021;6:11474–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dees M, Wanner L. In search of better management of potato common scab. Potato Res. 2012;55:249–68.

Article  Google Scholar 

Arseneault T, Goyer C, Filion M. Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathol. 2016;106:963–70.

Article  CAS  Google Scholar 

Lin C, Tsai C-H, Chen P-Y, Wu C-Y, Chang Y-L, Yang Y-L. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018;13:e0196520

Article  PubMed  PubMed Central  Google Scholar 

Biessy A, Filion M. Biological control of potato common scab by plant-beneficial bacteria. Biol Control. 2022;165:104808–21.

Article  CAS  Google Scholar 

Toussaint V, Valois D, Dodier M, Faucher E, Déry C, Brzezinski R. Characterization of actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Phytoprotection. 1997;78:43–51.

Article  Google Scholar 

Beauséjour J, Clermont N, Beaulieu C. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant Soil. 2003;256:463–8.

Article  Google Scholar 

Kishimoto S, Tsunematsu Y, Nishimura S, Hayashi Y, Hattori A, Kakeya H. an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. Tetrahedron. 2012;68:5572–8.

Article  CAS  Google Scholar 

Takahashi N, Kaneko K, Kakeya H.Total synthesis and antimicrobial activity of tumescenamide C and its derivatives.J Org Chem.2020;85:4530–5.

Article  CAS  PubMed  Google Scholar 

Loria R. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology. 1995;85:537–41.

Article  CAS  Google Scholar 

Bignell DRD, Francis IM, Fyans JK, Loria R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact. 2014;27:875–85.

Article  CAS  PubMed  Google Scholar 

Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu Y-P, Koteva K. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature. 2020;578:582–7.

Article  CAS  PubMed  Google Scholar 

van der Aart LT, Spijksma GK, Harms A, Vollmer W, Hankemeier T, van Wezel GP. High-resolution analysis of the peptidoglycan composition in Streptomyces coelicolor. J Bacteriol. 2018;200:e00290–18.

PubMed  PubMed Central  Google Scholar 

Schaub RE, Dillard JP. Digestion of peptidoglycan and analysis of soluble fragments. Bio-Protoc. 2017;7:2438.

Article  Google Scholar 

Kühner D, Stahl M, Demircioglu DD, Bertsche U. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci Rep. 2014;4:7494.

Article  PubMed  PubMed Central  Google Scholar 

Kho K, Meredith TC. Extraction and Analysis of Bacterial Teichoic Acids. Bio-Protoc. 2018;8:e3078.

Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S. et al. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576:459–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowden G, Johnson J, Schachtele C.The predominant actinomyces spp. isolated from infected dentin of active root caries lesions.J Dent Res. 1993;72:1171–9.

Article  CAS  PubMed  Google Scholar 

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis 33 program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

CAS  Google Scholar 

Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S, Frère J-M. et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci Rep.2016;6:27144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact. 2010;23:161–75.

Article  CAS  PubMed  Google Scholar 

Francis IM, Bergin D, Deflandre B, Gupta S, Salazar JJC, Villagrana R. et al. Role of alternative elicitor transporters in the onset of plant host colonization by Streptomyces scabiei 87-22. Biology. 2023;12:234–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L. et al. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microb Genom.2022;8:000760

CAS  PubMed  PubMed Central  Google Scholar 

Kinkel LL, Bowers JH, Shimizu K, Neeno-Eckwall EC, Schottel JL. Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Can J Microbiol. 1998;44:768–76.

Article  CAS  PubMed  Google Scholar 

Jourdan S, Francis IM, Deflandre B, Tenconi E, Riley J, Planckaert S. et al. Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol Plant Pathol. 2018;19:1480–90.

Article  CAS  PubMed  Google Scholar 

Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC. et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol. 2013;20:272–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bem AE, Velikova N, Pellicer MT, van Baarlen P, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol. 2015;10:213–24.

Article  CAS  PubMed  Google Scholar 

Kunkle T, Abdeen S, Salim N, Ray A-M, Stevens M, Ambrose AJ. et al. Hydroxybiphenylamide GroEL/ES inhibitors are potent antibacterials against planktonic and biofilm forms of Staphylococcus aureus. J Med Chem.2018;61:10651–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol.2009;4:875–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell J, Singh AK, Santa Maria JP,Jr., Kim Y, Brown S, Swoboda JG. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol.2011;6:106–16.

Article  CAS  PubMed  Google Scholar 

Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med.2016;8:329ra32

Article  PubMed  Google Scholar 

Naumova IB, Shashkov AS, Tul’skaya EM, Streshinskaya GM, Kozlova YI, Potekhina NV. et al. Cell wall teichoic acids: structural diversity, species specificity in the genus Nocardiopsis, and chemotaxonomic perspective. FEMS Microbiol Rev.2001;25:269–83.

Article  CAS  PubMed  Google Scholar 

Brown S, Santa Maria JP Jr, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;67:313–36.

Article  CAS  PubMed  Google Scholar 

Takenaka K, Kaneko K, Takahashi N, Nishimura S, Kakeya H. Retro-aza-Michael reaction of an o-aminophenol adduct in protic solvents inspired by natural products. Bioorg Med Chem. 2021;35:116059–116059.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif