Adding value to rice straw waste for high-level xylanase production using a new isolate of Bacillus altitudinis RS3025

Adhyaru DN, Bhatt NS, Modi HA (2014) Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol 3:182–190. https://doi.org/10.1016/j.bcab.2013.10.003

Adhyaru DN, Bhatt NS, Modi HA, Divecha J (2017) Cellulase-free-thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8: over-production through statistical approach, purification and bio-deinking/ bio-bleaching potential. Biocatal Agric Biotechnol 12:220–227. https://doi.org/10.1016/j.bcab.2017.10.010

Article  Google Scholar 

Alarcón E, Hernández C, García G, Ziarelli F, Gutiérrez-Rivera B, Musule R, Vázquez-Marrufo G, Gardner TG (2021) Changes in chemical and structural composition of sugarcane bagasse caused by alkaline pretreatments [Ca(OH)2 and NaOH] modify the amount of endoglucanase and β-glucosidase produced by Aspergillus niger in solid-state fermentation. Chem Eng Commun 209:594–606. https://doi.org/10.1080/00986445.2021.1881777

Article  Google Scholar 

Alokika, Kumar V, Singh B (2021) Biochemical characteristics of a novel ethanol-tolerant xylanase from Bacillus subtilis subsp. subtilis JJBS250 and its applicability in saccharification of rice straw. Biomass Convers Biorefin 1–13. https://doi.org/10.1007/s13399-020-01257-0

Alokika SB (2019) Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 103:8763–8784. https://doi.org/10.1007/s00253-019-10108-6

CAS  Article  PubMed  Google Scholar 

Anbarasan S, Jänis J, Paloheimo M, Laitaoja M, Vuolanto M, Karimäki J, Vainiotalo P, Leisola M, Turunen O (2010) Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by Thermopolyspora flexuosa. Appl Environ Microbiol 76:356–360. https://doi.org/10.1128/AEM.00357-09

CAS  Article  Google Scholar 

Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. https://doi.org/10.1016/0168-1656(92)90074-J

CAS  Article  Google Scholar 

Bhardwaj N, Kumar B, Verma P (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess 6:1–40. https://doi.org/10.1186/s40643-019-0276-2

Article  Google Scholar 

Bhattacharyya P, Bhaduri D, Adak T, Munda S, Satapathy BS, Dash PK, Padhy SR, Pattanayak A, Routray S, Chakraborti M, Baig MJ, Mukherjee AK, Nayak AK, Pathak H (2020) Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Ind Crops Prod 143:111919. https://doi.org/10.1016/j.indcrop.2019.111919

CAS  Article  Google Scholar 

Boonmee K, Thammasittirong SN-R, Thammasittirong A (2019) Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech 9:1–11. https://doi.org/10.1007/s13205-019-1646-3

Browning BL (1967) Methods of wood chemistry. Wiley & Sons, Interscience Publishers, New York

Google Scholar 

Chang KL, Thitikornamorn J, Hsieh JF, Ou BM, Chen SH, Ratanakhanokchai K, Huang PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35:90–95. https://doi.org/10.1016/j.biombioe.2010.08.027

CAS  Article  Google Scholar 

Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369. https://doi.org/10.1016/j.bej.2010.01.012

CAS  Article  Google Scholar 

Cheewaphongphan P, Junpen A, Kamnoet O, Garivait S (2018) Study on the potential of rice straws as a supplementary fuel in very small power plants in Thailand. Energy J 11:1–21. https://doi.org/10.3390/en11020270

da Silva FL, Magalhães ERB, de Sá Leitão ALO, dos Santos ES (2020) Production of lignocellulolytic enzymatic complex using pretreated carnauba straw as carbon source and application on sugarcane bagasse hydrolysis. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00815-w

Article  Google Scholar 

Dhillon A, Gupta JK, Khanna S (2000) Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process Biochem 35:849–856. https://doi.org/10.1016/S0032-9592(99)00152-1

CAS  Article  Google Scholar 

Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–167. https://doi.org/10.1016/j.biortech.2012.12.067

CAS  Article  PubMed  Google Scholar 

Faria NT, Marques S, Ferreira FC, Fonseca C (2019) Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery’s spent grain as substrates. N Biotechnol 49:137–143. https://doi.org/10.1016/j.nbt.2018.11.001

CAS  Article  PubMed  Google Scholar 

Fatokun EN, Nwodo UU, Okoh AI (2016) Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci 6:1–14. https://doi.org/10.3390/app6100286

CAS  Article  Google Scholar 

Ferreira RdG, Azzoni AR, Freitas S (2018) Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: the case of recombinant β-glucosidase. Biotechnol Biofuels 11:1–13. https://doi.org/10.1186/s13068-018-1077-0

CAS  Article  Google Scholar 

Guo H, Hong C, Zhang C, Zheng B, Jiang D, Qin W (2018) Bioflocculants’ production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae. Bioresour Technol 255:171–179. https://doi.org/10.1016/j.biortech.2018.01.082

CAS  Article  PubMed  Google Scholar 

Ho HL (2015) Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). Int J Food Process Technol 6:1–9

Google Scholar 

Irfan M, Asghar U, Nadeem M, Nelofer R, Syed Q (2016) Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Radiat Res Appl Sci 9:139–147. https://doi.org/10.1016/j.jrras.2015.10.008

CAS  Article  Google Scholar 

Javaheri-Kermani M, Asoodeh A (2019) A novel beta-1,4 glucanase produced by symbiotic Bacillus sp. CF96 isolated from termite (Anacanthotermes). Int J Biol Macromol 131:752–759. https://doi.org/10.1016/j.ijbiomac.2019.03.124

CAS  Article  PubMed  Google Scholar 

Kalim B, Ali NM (2016) Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech 6:1–7. https://doi.org/10.1007/s13205-016-0445-3

Kallel F, Driss D, Chaari F, Zouari-Ellouzi S, Chaabouni M, Ghorbel R, Chaabouni SE (2016) Statistical optimization of low-cost production of an acidic xylanase by Bacillus mojavensis UEB-FK: its potential applications. Biocatal Agric Biotechnol 5:1–10. https://doi.org/10.1016/j.bcab.2015.11.005

Article  Google Scholar 

Kang HW, Kim Y, Kim SW, Choi GW (2012) Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess Biosyst Eng 35:115–122. https://doi.org/10.1007/s00449-011-0621-0

Kaur A, Singh A, Dua A, Mahajan R (2017) Cost-effective and concurrent production of industrially valuable xylano-pectinolytic enzymes by a bacterial isolate Bacillus pumilus AJK. Prep Prep Biochem Biotechnol 47:8–18. https://doi.org/10.1080/10826068.2016.1155059

CAS  Article  PubMed  Google Scholar 

Kaur J, Chugh P, Soni R, Soni SK (2020) A low-cost approach for the generation of enhanced sugars and ethanol from rice straw using in-house produced cellulase-hemicellulase consortium from A. niger P-19. Bioresour Technol Rep 11:100469. https://doi.org/10.1016/j.biteb.2020.100469

Klein-Marcuschamer, D, Oleskowicz-Popiel, P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. https://doi.org/10.1002/bit.24370.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018a) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar V, Dangi AK, Shukla P (2018b) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235. https://doi.org/10.1007/s12033-018-0059-6

CAS  Article  PubMed  Google Scholar 

Kumar V, Shukla P (2018) Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochem 71:53–60. https://doi.org/10.1016/j.procbio.2018.05.019

CAS  Article  Google Scholar 

Liu Y, Lai Q, Dong C, Sun F, Wang L, Li G, Shao Z (2013) Phylogenetic diversity of the bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE 8(11):e80097. https://doi.org/10.1371/journal.pone.0080097

CAS  Article  PubMed  PubMed Central  Google Scholar 

Machado TB, Corrêa Junior LCS, de Mattos MVCdV, Gautério GV, Kalil SJ (2021) Sequential alkaline and ultrasound pretreatments of oat hulls improve xylanase production by Aureobasidium pullulans in submerged cultivation. Waste Biomass Valorization 12:5991–6004. https://doi.org/10.1007/s12649-021-01425-x

CAS  Article  Google Scholar 

Malhotra G, Chapadgaonkar SS (2020) Taguchi optimization and scale up of xylanase from Bacillus licheniformis isolated from hot water geyser. J Genet Eng Biotechnol 18:1–9. https://doi.org/10.1186/s43141-020-00084-0

Article  Google Scholar 

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

CAS  Article  Google Scholar 

Molaverdi M, Mirmohamadsadeghi S, Karimi K, Aghbashlo M, Tabatabaei M (2022) Efficient ethanol production from rice straw through cellulose restructuring and high solids loading fermentation by Mucor indicus. J Clean Prod 339:130702. https://doi.org/10.1016/j.jclepro.2022.130702

CAS  Article  Google Scholar 

Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37:71–83. https://doi.org/10.1007/s10295-009-0650-8

CAS  Article  PubMed  Google Scholar 

Patel K, Dudhagara P (2020) Optimization of xylanase production by Bacillus tequilensis strain UD-3 using economical agricultural substrate and its application in rice straw pulp bleaching. Biocatal Agric Biotechnol 30:101846. https://doi.org/10.1016/j.bcab.2020.101846

Article  Google Scholar 

Qadir F, Shariq M, Ahmed A, Sohail M (2018) Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind Crops Prod 123:407–415. https://doi.org/10.1016/j.indcrop.2018.07.021

CAS  Article  Google Scholar 

Salehi SMA, Karimi K, Behzad T, Poornejad N (2012) Efficient conversion of rice straw to bioethanol using sodium carbonate pretreatment. Energy Fuels 26:7354–7361. https://doi.org/10.1021/ef301476b

CAS  Article  Google Scholar 

Seekram P, Thammasittirong A, Thammasittirong SN-R (2021) Evaluation of spent mushroom substrate after cultivation of Pleurotus ostreatus as a new raw material for xylooligosaccharides production using crude xylanases from Aspergillus flavus KUB2. 3 Biotech 11:1–9. https://doi.org/10.1007/s13205-021-02725-8

Shakir HA, Anwar A, Irfan M, Khan M, Ali S, Qazi JI (2020) Statistical optimization of xylanase from Bacillus licheniformis using banana peels in submerged fermentation. Iran J Sci Technol Trans A Sci 44:981–991. https://doi.org/10.1007/s40995-020-00933-0

Article  Google Scholar 

Sharma S, Bajaj BK (2018) Xylanase production from a new strain of Aspergillus terreus S9 and its application for saccharification of rice straw using combinatorial approach. Environ Prog Sustain Energy 37:1210–1219. https://doi.org/10.1002/ep.12779

CAS  Article  Google Scholar 

Sridevi A, Narasimha G, Ramanjaneyulu G, Dileepkumar K, Reddy BR, Devi PS (2015) Saccharification of pretreated sawdust by Aspergillus niger cellulase. 3 Biotech 5:883–892. https://doi.org/10.1007/s13205-015-0284-7

Takano M, Hoshino K (2018) Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresour Bioprocess 5:16. https://doi.org/10.1186/s40643-018-0203-y

Article  Google Scholar 

TAPPI (1993) T203-om-93: alpha-, beta- and gamma-cellulose in pulp. TAPPI Press, Atlanta, TAPPI test methods

Google Scholar 

TAPPI (2002) T222 om-02: acid insoluble lignin in wood and pulp. TAPPI Press, Atlanta, TAPPI test methods

Google Scholar 

Thomas L, Sindhu R, Binod P, Pandey A (2015) Production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Indian J Exp Biol 53:356–363

留言 (0)

沒有登入
gif