Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications

Addison WN, Fu MM, Yang HX, Lin Z, Nagano K, Gori F et al (2014) Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch. Mol Cell Biol 34(16):3076–3085

Google Scholar 

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

Google Scholar 

Akinci B, Sahinoz M, Oral E (2018) Lipodystrophy syndromes: presentation and treatment

Google Scholar 

Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Uyenishi J, Reed JM et al (2008) Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab 294(5):E918–EE27

Google Scholar 

Amano Y, Nonaka Y, Takeda R, Kano Y, Hoshino D (2020) Effects of electrical stimulation-induced resistance exercise training on white and brown adipose tissues and plasma meteorin-like concentration in rats. Physiol Rep 8(16):e14540

Google Scholar 

Ambele MA, Dhanraj P, Giles R, Pepper MS (2020) Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci 21(12):4283

Google Scholar 

Arroyave F, Montaño D, Lizcano F (2020) Adipose tissue browning for the treatment of obesity and metabolic diseases. CellR4 8:2877

Google Scholar 

Bae JY (2018) Aerobic exercise increases meteorin-like protein in muscle and adipose tissue of chronic high-fat diet-induced obese mice. Biomed Res Int 2018:6283932

Google Scholar 

Bal NC, Maurya SK, Pani S, Sethy C, Banerjee A, Das S et al (2017a) Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners? Biosci Rep 37(5)

Google Scholar 

Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA et al (2017b) Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 292(40):16616–16625

Google Scholar 

Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244–E1E53

Google Scholar 

Barletta G, Stefani L, Del Bene R, Fronzaroli C, Vecchiarino S, Lazzeri C et al (1998) Effects of exercise on natriuretic peptides and cardiac function in man. Int J Cardiol 65(3):217–225

Google Scholar 

Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200–205

Google Scholar 

Berbée JF, Boon MR, Khedoe PPS, Bartelt A, Schlein C, Worthmann A et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6(1):1–11

Google Scholar 

Béréziat V, Kasus-Jacobi A, Perdereau D, Cariou B, Girard J, Burnol A-F (2002) Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J Biol Chem 277(7):4845–4852

Google Scholar 

Bernardis LL (1985) Ventromedial and dorsomedial hypothalamic syndromes in the weanling rat: is the “center” concept really outmoded? Brain Res Bull 14(6):537–549

Google Scholar 

Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Paranjpe I, Wainwright GL et al (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25(4):811–22.e4

Google Scholar 

Bi S, Li L (2013) Browning of white adipose tissue: role of hypothalamic signaling. Ann N Y Acad Sci 1302(1):30–34

Google Scholar 

Billon N, Dani C (2012) Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep 8(1):55–66

Google Scholar 

Björnholm M, Al-Khalili L, Dicker A, Näslund E, Rössner S, Zierath J et al (2002) Insulin signal transduction and glucose transport in human adipocytes: effects of obesity and low calorie diet. Diabetologia 45(8):1128–1135

Google Scholar 

Bloomgarden Z (2018) Diabetes and branched-chain amino acids: what is the link? J Diabetes 10(5):350–352

Google Scholar 

Bloor ID, Symonds ME (2014) Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 66(1):95–103

Google Scholar 

Bodary PF, Pate RR, Wu QF, Mcmillan GS (1999) Effects of acute exercise on plasma erythropoietin levels in trained runners. Med Sci Sports Exerc 31(4):543–546

Google Scholar 

Bombardier E, Smith IC, Gamu D, Fajardo VA, Vigna C, Sayer RA et al (2013) Sarcolipin trumps beta-adrenergic receptor signaling as the favored mechanism for muscle-based diet-induced thermogenesis. FASEB J 27(9):3871–3878

Google Scholar 

Boon MR, Khedoe PPS, Hoeke G, Kooijman S, Dijk W, Kersten S et al (2014) Brown adipose tissue internalizes fatty acids by selective delipidation of lipoproteins rather than by uptake of lipoproteins, Turning up the heat: role of brown adipose tissue, p 53

Google Scholar 

Bose M, Oliván B, Laferrère B (2009) Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes 16(5):340–346

Google Scholar 

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

Google Scholar 

Boucher J, Softic S, El Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN et al (2016) Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes 65(8):2201–2213

Google Scholar 

Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296(4):E581–EE91

Google Scholar 

Braga M, Reddy ST, Vergnes L, Pervin S, Grijalva V, Stout D et al (2014) Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res 55(3):375–384

Google Scholar 

Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519(7542):242–246

Google Scholar 

Brown AC (2020) Brown adipocytes from induced pluripotent stem cells-how far have we come? Ann N Y Acad Sci 1463(1):9–22

Google Scholar 

Cabrero À, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M (2001) Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 50(8):1883–1890

Google Scholar 

Cannavino J, Shao M, An YA, Bezprozvannaya S, Chen S, Kim J et al (2021) Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci 118(23):e2104650118

Google Scholar 

Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

Google Scholar 

Caputo T, Tran V, Bararpour N, Winkler C, Aguileta G, Trang K et al (2021) Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cell Mol Life Sci 78

Google Scholar 

Carbó N, López-Soriano JN, Costelli P, Alvarez B, Busquets SL, Baccino FM et al (2001) Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 1526(1):17–24

Google Scholar 

Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697

Google Scholar 

Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol 9:447

Google Scholar 

Castillo-Armengol J, Fajas L, Lopez-Mejia IC (2019) Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 20(9):e47903

Google Scholar 

Cătoi AF, Suciu Ş, PÂrvu AE, Copăescu C, Galea RF, Buzoianu AD et al (2014) Increased chemerin and decreased omentin-1 levels in morbidly obese patients are correlated with insulin resistance, oxidative stress and chronic inflammation. Clujul Med 87(1):19

Google Scholar 

Cawthorn W, Heyd F, Hegyi K, Sethi J (2007) Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4 (TCF7L2)-dependent pathway. Cell Death Differ 14(7):1361–1373

Google Scholar 

Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106(5):563–573. https://doi.org/10.1016/S0092-8674(01)00474-3

CrossRef  Google Scholar 

Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7(22)

Google Scholar 

Chang JC, Durinck S, Chen MZ, Martinez-Martin N, Zhang JA, Lehoux I et al (2019) Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-based metabolic therapy. Sci Rep 9(1):8833

Google Scholar 

Chen W, Balland E, Cowley MA (2017) Hypothalamic insulin resistance in obesity: effects on glucose homeostasis. Neuroendocrinology 104(4):364–381

Google Scholar 

Cheng R, Ma J-x (2015) Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord 16(1):67–75

Google Scholar 

Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145(1):269–280

Google Scholar 

Cho C-H, Jun Koh Y, Han J, Sung H-K, Jong Lee H, Morisada T et al (2007) Angiogenic role of LYVE-1–positive macrophages in adipose tissue. Circ Res 100(4):e47–e57

Google Scholar 

Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7(30)

Google Scholar 

Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

CrossRef  Google Scholar 

Christian M (2015) Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocytes 4(1):50–54

Google Scholar 

Chung LH, Qi Y (2019) Lipodystrophy – a rare condition with serious metabolic abnormalities, Rare diseases. IntechOpen

Google Scholar 

Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10

Google Scholar 

Cleal L, Aldea T, Chau Y-Y (2017) Fifty shades of white: understanding heterogeneity in white adipose stem cells. Adipocyte 6(3):205–216. https://doi.org/10.1080/21623945.2017.1372871

CrossRef  Google Scholar 

Contreras GA, Lee Y-H, Mottillo EP, Granneman JG (2014) Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 307(9):E793–E7E9

Google Scholar 

Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842(3):463–472

Google Scholar 

Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12):6018–6027

Google Scholar 

Crandall JP, Wahl RL (2021) Perspectives on Brown adipose tissue imaging: insights from preclinical and clinical observations from the last and current century. J Nucl Med 62(Suppl 2):34S–43S

Google Scholar 

Cristancho AG, Schupp M, Lefterova MI, Cao S, Cohen DM, Chen CS et al (2011) Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proc Natl Acad Sci 108(39):16271–16276

Google Scholar 

Crujeiras AB, Pardo M, Arturo RR, Santiago NC, Zulet MA, Martínez JA et al (2014) Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol 26(2):198–207

Google Scholar 

Davis R, Aguirre V, Uchida T, Yenush L, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275(12):9047–9054

Google Scholar 

Davis J, Gabler N, Walker-Daniels J, Spurlock M (2009) The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm Metab Res 41(07):523–530

Google Scholar 

De Jong J, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308. https://doi.org/10.1152/ajpendo.00023.2015

de Mutsert R, Gast K, Widya R, de Koning E, Jazet I, Lamb H et al (2018) Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study. Metab Syndr Relat Disord 16(1):54–63

Google Scholar 

Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC et al (2007) Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity 15(12):2984–2993

Google Scholar 

Denton NF, Eghleilib M, Al-Shar

留言 (0)

沒有登入
gif