Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection

HIV Surveillance Report: (2020) Supplemental Report, Centers for Disease Control and Prevention

Estimated number of people (all ages) living with HIV (2020) World Health Organization

Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12:16–24

PubMed  PubMed Central  Article  Google Scholar 

Veenstra M, Leon-Rivera R, Li M, Gama L, Clements JE, Berman JW (2017) Mechanisms of CNS viral seeding by HIV(+) CD14(+) CD16(+) monocytes: establishment and reseeding of viral reservoirs contributing to HIV-associated neurocognitive disorders. mBio mBio 8(5):e01280-17

Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Heldebrant C, Smith R, Conrad A, Kleinman SH, Busch MP (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17:1871–1879

PubMed  Article  Google Scholar 

Spudich S, Peterson J, Fuchs D, Price RW, Gisslen M (2019) Potential for early antiretroviral therapy to reduce central nervous system HIV-1 persistence. AIDS 33(Suppl 2):S135–S144

CAS  PubMed  Article  Google Scholar 

Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, Suwanwela NC, Jagodzinski L, Michael N, Spudich S, van Griensven F, de Souza M, Kim J, Ananworanich J, Group RSS (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chan P, Patel P, Hellmuth J, Colby DJ, Kroon E, Sacdalan C, Pinyakorn S, Jagodzinski L, Krebs S, Ananworanich J, Valcour V, Spudich S, Team RSS (2018) Distribution of human immunodeficiency virus (HIV) ribonucleic acid in cerebrospinal fluid and blood is linked to CD4/CD8 ratio during acute HIV. J Infect Dis 218:937–945

CAS  PubMed  PubMed Central  Article  Google Scholar 

Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74:255–265

CAS  PubMed  Article  Google Scholar 

Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19

CAS  PubMed  Article  Google Scholar 

Rojas-Celis V, Valiente-Echeverria F, Soto-Rifo R, Toro-Ascuy D (2019) New challenges of HIV-1 infection: how HIV-1 attacks and resides in the central nervous system. Cells 8:1245

Banks WA, Kastin AJ, Akerstrom V (1997) HIV-1 protein gp120 crosses the blood-brain barrier: role of adsorptive endocytosis. Life Sci 61:PL119-25

CAS  PubMed  Article  Google Scholar 

Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, Gonzalez RG, Salemi M, Burdo TH, Williams KC (2014) Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog 10:e1004533

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11:e1004720

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lee CA, Beasley E, Sundar K, Smelkinson M, Vinton C, Deleage C, Matsuda K, Wu F, Estes JD, Lafont BAP, Brenchley JM, Hirsch VM (2020) Simian immunodeficiency virus-infected memory CD4(+) T cells infiltrate to the site of infected macrophages in the neuroparenchyma of a chronic macaque model of neurological complications of AIDS. mBio 11(2):e00602-20

Sharma V, Creegan M, Tokarev A, Hsu D, Slike BM, Sacdalan C, Chan P, Spudich S, Ananworanich J, Eller MA, Krebs SJ, Vasan S, Bolton DL, Rv254/Search, Teams RSS (2021) Cerebrospinal fluid CD4+ T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog 17:e1010105

CAS  PubMed  PubMed Central  Article  Google Scholar 

Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, Padilla-Parra S, Sattentau QJ (2017) Astrocytes resist HIV-1 fusion but engulf infected macrophage material. Cell Rep 18:1473–1483

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carroll-Anzinger D, Al-Harthi L (2006) Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol 80:541–544

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ash MK, Al-Harthi L, Schneider JR (2021) HIV in the brain: identifying viral reservoirs and addressing the challenges of an HIV cure. Vaccines (Basel) 9:867

Li GH, Maric D, Major EO, Nath A (2020) Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 34:963–978

CAS  PubMed  Article  Google Scholar 

Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ (2014) Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier model. Virology 454–455:128–138

PubMed  Article  CAS  Google Scholar 

Subra C, Trautmann L (2019) Role of T lymphocytes in HIV neuropathogenesis. Curr HIV/AIDS Rep 16(3):236–243

PubMed  PubMed Central  Article  Google Scholar 

Lee KM, Chiu KB, Renner NA, Sansing HA, Didier PJ, MacLean AG (2014) Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. J Neurovirol 20:474–484

CAS  PubMed  PubMed Central  Article  Google Scholar 

Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW (2013) Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS ONE 8:e69270

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nickoloff-Bybel EA, Calderon TM, Gaskill PJ, Berman JW (2020) HIV Neuropathogenesis in the presence of a disrupted dopamine system. J Neuroimmune Pharmacol 15:729–742

CAS  PubMed  PubMed Central  Article  Google Scholar 

Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, Veenstra M, Anastos K, Morgello S, Berman JW (2017) Dopamine Increases CD14(+)CD16(+) Monocyte transmigration across the blood brain barrier: implications for substance abuse and HIV neuropathogenesis. J Neuroimmune Pharmacol 12:353–370

PubMed  PubMed Central  Article  Google Scholar 

Coley JS, Calderon TM, Gaskill PJ, Eugenin EA, Berman JW (2015) Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS ONE 10:e0117450

PubMed  PubMed Central  Article  CAS  Google Scholar 

Carvallo L, Lopez L, Fajardo JE, Jaureguiberry-Bravo M, Fiser A, Berman JW (2017) HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS ONE 12:e0179882

PubMed  PubMed Central  Article  CAS  Google Scholar 

McRae M (2016) HIV and viral protein effects on the blood brain barrier. Tissue Barriers 4:e1143543

PubMed  PubMed Central  Article  CAS  Google Scholar 

Williams ME, Zulu SS, Stein DJ, Joska JA, Naude PJW (2020) Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 136:104701

CAS  PubMed  Article  Google Scholar 

Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW, Ranga U, Tyor WR, Prasad VR (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28:10010–10016

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sonti S, Sharma AL, Tyagi M (2021) HIV-1 persistence in the CNS: mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 303:198523

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bethel-Brown C, Yao H, Hu G, Buch S (2012) Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. J Neuroinflammation 9:262

CAS  PubMed  PubMed Central  Article  Google Scholar 

Spudich SS (2016) Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 11:226–233

CAS  PubMed  PubMed Central  Article  Google Scholar 

Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, Buch S (2018) HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14:1596–1619

CAS  PubMed  PubMed Central  Article  Google Scholar 

Samikkannu T, Atluri VS, Arias AY, Rao KV, Mulet CT, Jayant RD, Nair MP (2014) HIV-1 subtypes B and C Tat differentially impact synaptic plasticity expression and implicates HIV-associated neurocognitive disorders. Curr HIV Res 12:397–405

CAS  PubMed  PubMed Central  Article  Google Scholar 

Haughey NJ, Nath A, Mattson MP, Slevin JT, Geiger JD (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467

CAS  PubMed  Article  Google Scholar 

Hu XT (2016) HIV-1 Tat-mediated calcium dysregulation and neuronal dysfunction in vulnerable brain regions. Curr Drug Targets 17:4–14

CAS  PubMed  PubMed Central  Article  Google Scholar 

Var SR, Day TR, Vitomirov A, Smith DM, Soontornniyomkij V, Moore DJ, Achim CL, Mehta SR, Perez-Santiago J (2016) Mitochondrial injury and cognitive function in HIV infection and methamphetamine use. AIDS 30:839–848

CAS  PubMed  Article 

留言 (0)

沒有登入
gif