Vestigial-Like 3 Plays an Important Role in Osteoblast Differentiation by Regulating the Expression of Osteogenic Transcription Factors and BMP Signaling

Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, Kawashima H (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32. https://doi.org/10.1359/jbmr.2001.16.1.24

CAS  Article  PubMed  Google Scholar 

Ikegame M, Tabuchi Y, Furusawa Y, Kawai M, Hattori A, Kondo T, Yamamoto T (2016) Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteoblast differentiation. Biomed Res 37:117–126. https://doi.org/10.2220/biomedres.37.117

CAS  Article  PubMed  Google Scholar 

Simon E, Faucheux C, Zider A, Theze N, Thiebaud P (2016) From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol 226:297–315. https://doi.org/10.1007/s00427-016-0546-3

CAS  Article  PubMed  Google Scholar 

Vaudin P, Delanoue R, Davidson I, Silber J, Zider A (1999) TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development 126:4807–4816

CAS  Article  PubMed  Google Scholar 

Maeda T, Chapman DL, Stewart AF (2002) Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. J Biol Chem 277:48889–48898. https://doi.org/10.1074/jbc.M206858200

CAS  Article  PubMed  Google Scholar 

Mielcarek M, Piotrowska I, Schneider A, Gunther S, Braun T (2009) VITO-2, a new SID domain protein, is expressed in the myogenic lineage during early mouse embryonic development. Gene Expr Patterns : GEP 9:129–137. https://doi.org/10.1016/j.gep.2008.12.002

CAS  Article  PubMed  Google Scholar 

Faucheux C, Naye F, Tréguer K, Fédou S, Thiébaud P, Théze N (2010) Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates. Int J Dev Biol 54:1375–1382. https://doi.org/10.1387/ijdb.103080cf

CAS  Article  PubMed  Google Scholar 

Simon E, Thézé N, Fédou S, Thiébaud P, Faucheux C (2017) Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration. Biol Open 6:1528–1540. https://doi.org/10.1242/bio.026153

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yamaguchi N (2020) Multiple roles of vestigial-like family members in tumor development. Front Oncol 10:1266. https://doi.org/10.3389/fonc.2020.01266

Article  PubMed  PubMed Central  Google Scholar 

Arbajian E, Hofvander J, Magnusson L, Mertens F (2020) Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosomes Cancer 59:309–317. https://doi.org/10.1002/gcc.22832

CAS  Article  PubMed  Google Scholar 

Ali NM, Niada S, Brini AT, Morris MR, Kurusamy S, Alholle A, Huen D, Antonescu CR, Tirode F, Sumathi V, Latif F (2019) Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone. J Pathol 247:166–176. https://doi.org/10.1002/path.5176

CAS  Article  PubMed  Google Scholar 

Liang Y, Tsoi LC, Xing X, Beamer MA, Swindell WR, Sarkar MK, Berthier CC, Stuart PE, Harms PW, Nair RP, Elder JT, Voorhees JJ, Kahlenberg JM, Gudjonsson JE (2017) A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat Immunol 18:152–160. https://doi.org/10.1038/ni.3643

CAS  Article  PubMed  Google Scholar 

Billi AC, Gharaee-Kermani M, Fullmer J, Tsoi LC, Hill BD, Gruszka D, Ludwig J, Xing X, Estadt S, Wolf SJ, Rizvi SM, Berthier CC, Hodgin JB, Beamer MA, Sarkar MK, Liang Y, Uppala R, Shao S, Zeng C, Harms PW, Verhaegen ME, Voorhees JJ, Wen F, Ward NL, Dlugosz AA, Kahlenberg JM, Gudjonsson JE (2019) The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight. https://doi.org/10.1172/jci.insight.127291

Article  PubMed  PubMed Central  Google Scholar 

Halperin DS, Pan C, Lusis AJ, Tontonoz P (2013) Vestigial-like 3 is an inhibitor of adipocyte differentiation. J Lipid Res 54:473–481. https://doi.org/10.1194/jlr.M032755

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P, Fan X (2021) CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ 28:283–302. https://doi.org/10.1038/s41418-020-0600-6

CAS  Article  PubMed  Google Scholar 

Sinha KM, Zhou X (2013) Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 114:975–984. https://doi.org/10.1002/jcb.24439

CAS  Article  PubMed  PubMed Central  Google Scholar 

Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239. https://doi.org/10.1002/jcb.20958

CAS  Article  PubMed  Google Scholar 

Hojo H, Chung UI, Ohba S (2017) Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen Ther 6:100–107. https://doi.org/10.1016/j.reth.2017.04.001

Article  PubMed  PubMed Central  Google Scholar 

Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215:578–587. https://doi.org/10.1002/jcp.21342

CAS  Article  PubMed  Google Scholar 

Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 151:247–254. https://doi.org/10.1093/jb/mvs004

CAS  Article  PubMed  Google Scholar 

Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

Article  PubMed  PubMed Central  Google Scholar 

Kawane T, Komori H, Liu W, Moriishi T, Miyazaki T, Mori M, Matsuo Y, Takada Y, Izumi S, Jiang Q, Nishimura R, Kawai Y, Komori T (2014) Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J Bone Miner Res 29:1960–1969. https://doi.org/10.1002/jbmr.2240

CAS  Article  PubMed  Google Scholar 

Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809

CAS  Article  Google Scholar 

Greenblatt MB, Shim JH, Glimcher LH (2013) Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol 29:63–79. https://doi.org/10.1146/annurev-cellbio-101512-122347

CAS  Article  PubMed  Google Scholar 

Rodríguez-Carballo E, Gámez B, Ventura F (2016) p38 MAPK signaling in osteoblast differentiation. Front Cell Dev Biol 4:40. https://doi.org/10.3389/fcell.2016.00040

Article  PubMed  PubMed Central  Google Scholar 

Ikegame M, Ejiri S, Okamura H (2019) Expression of non-collagenous bone matrix proteins in osteoblasts stimulated by mechanical stretching in the cranial suture of neonatal mice. J Histochem Cytochem 67:107–116. https://doi.org/10.1369/0022155418793588

CAS  Article  PubMed  Google Scholar 

Burstone MS (1961) Histochemical demonstration of phosphatases in frozen sections with naphthol AS-phosphates. J Histochem Cytochem 9:146–153

CAS  Article  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tosa I, Yamada D, Yasumatsu M, Hinoi E, Ono M, Oohashi T, Kuboki T, Takarada T (2019) Postnatal Runx2 deletion leads to low bone mass and adipocyte accumulation in mice bone tissues. Biochem Biophys Res Commun 516:1229–1233. https://doi.org/10.1016/j.bbrc.2019.07.014

CAS  Article  PubMed  Google Scholar 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764. https://doi.org/10.1016/s0092-8674(00)80258-5

CAS  Article  PubMed  Google Scholar 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29. https://doi.org/10.1016/s0092-8674(01)00622-5

CAS  Article  PubMed  Google Scholar 

Robledo RF, Rajan L, Li X, Lufkin T (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16:1089–1101. https://doi.org/10.1101/gad.988402

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baek K, Baek JH (2013) The transcription factors myeloid elf-1-like factor (MEF) and distal-less homeobox 5 (Dlx5) inversely regulate the differentiation of osteoblasts and adipocytes in bone marrow. Adipocyte 2:50–54. https://doi.org/10.4161/adip.22019

CAS  Article  PubMed  PubMed Central  Google Scholar 

Suo J, Feng X, Li J, Wang J, Wang Z, Zhang L, Zou W (2020) VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Sci Adv 6:eaba4147. https://doi.org/10.1126/sciadv.aba4147

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif