Absence of E2f1 Negates Pro-osteogenic Impacts of p21 Absence

Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20(5):1091–1098. https://doi.org/10.1016/S0736-0266(02)00017-7

Article  CAS  PubMed  Google Scholar 

Mistry AS, Mikos AG (2005) Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 94:1–22. https://doi.org/10.1007/B99997

Article  PubMed  Google Scholar 

Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC (2022) Gene therapy in orthopaedics: progress and challenges in pre-clinical development and translation. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2022.901317

Article  PubMed  PubMed Central  Google Scholar 

Baroli B (2009) From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 98(4):1317–1375. https://doi.org/10.1002/JPS.21528

Article  CAS  PubMed  Google Scholar 

Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363. https://doi.org/10.1615/CRITREVBIOMEDENG.V40.I5.10

Article  PubMed  PubMed Central  Google Scholar 

De la Vega RE, Atasoy-zeybek A, Panos JA, Van griensven M, Evans CH, Balmayor ER (2021) Gene therapy for bone healing: lessons learned and new approaches. Transl Res 236:1–16. https://doi.org/10.1016/J.TRSL.2021.04.009

Article  Google Scholar 

Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Jt Surg Am 90(1):99–110. https://doi.org/10.2106/JBJS.G.01546

Article  Google Scholar 

Klamut HJ, Chen ST, Lau KHW, Baylink DJ (2004) Progress toward skeletal gene therapy. Crit Rev Eukaryot Gene Expr 14(1 & 2):89–136. https://doi.org/10.1615/CRITREVEUKARYOTGENEEXPR.V14.I12.60

Article  CAS  PubMed  Google Scholar 

Premnath P et al (2017) p21−/− mice exhibit enhanced bone regeneration after injury. BMC Musculoskelet Disord. https://doi.org/10.1186/S12891-017-1790-Z

Article  PubMed  PubMed Central  Google Scholar 

Buitrago-Molina LE et al (2014) P21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut 63(9):1501–1512. https://doi.org/10.1136/gutjnl-2013-304829

Article  CAS  PubMed  Google Scholar 

Zu G et al (2017) Nurr1 promotes intestinal regeneration after ischemia/reperfusion injury by inhibiting the expression of p21 (Waf1/Cip1). J Mol Med 95(1):83–95. https://doi.org/10.1007/S00109-016-1464-6/FIGURES/7

Article  CAS  PubMed  Google Scholar 

Jablonski CL, Besler BA, Ali J, Krawetz RJ (2021) p21−/− mice exhibit spontaneous articular cartilage regeneration post-injury. Cartilage 13(2):1608S-1617S. https://doi.org/10.1177/1947603519876348

Article  CAS  PubMed  Google Scholar 

Bedelbaeva K et al (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA 107(13):5845–5850. https://doi.org/10.1073/PNAS.1000830107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou H et al (2022) LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. J Cell Mol Med 26(10):2981–2994. https://doi.org/10.1111/JCMM.17311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buitrago-Molina LE et al (2013) The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice. Hepatology 58(3):1143–1152. https://doi.org/10.1002/HEP.26412

Article  CAS  PubMed  Google Scholar 

Stepniak E et al (2006) c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev 20(16):2306–2314. https://doi.org/10.1101/gad.390506

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu L et al (2001) The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414(6862):457–462. https://doi.org/10.1038/35106593

Article  CAS  PubMed  Google Scholar 

Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y (2013) E2F1 effects on osteoblast differentiation and mineralization are mediated through up-regulation of frizzled-1. Bone 56(2):234. https://doi.org/10.1016/J.BONE.2013.06.019

Article  PubMed  PubMed Central  Google Scholar 

Scheijen B, Bronk M, van der Meer T, Bernards R (2003) Constitutive E2F1 overexpression delays endochondral bone formation by inhibiting chondrocyte differentiation. Mol Cell Biol 23(10):3656. https://doi.org/10.1128/MCB.23.10.3656-3668.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taiani JT et al (2010) Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev 19(7):989–998. https://doi.org/10.1089/scd.2009.0297

Article  CAS  PubMed  Google Scholar 

Felder AA et al (2021) The plate-to-rod transition in trabecular bone loss is elusive. R Soc Open Sci. https://doi.org/10.1098/RSOS.201401

Article  PubMed  PubMed Central  Google Scholar 

Kodama J, Kaito T (2020) Osteoclast multinucleation: review of current literature. Int J Mol Sci 21(16):1–35. https://doi.org/10.3390/IJMS21165685

Article  Google Scholar 

Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10(1):79–98. https://doi.org/10.1177/10454411990100010401

Article  CAS  PubMed  Google Scholar 

Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400. https://doi.org/10.1038/NRC2657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31(1):13–20. https://doi.org/10.1002/IJC.2910310104

Article  CAS  PubMed  Google Scholar 

Lefebvre V, Dvir-Ginzberg M (2017) SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res 58(1):2. https://doi.org/10.1080/03008207.2016.1183667

Article  CAS  PubMed  Google Scholar 

Lowery JW, Rosen V (2018) Bone morphogenetic protein-based therapeutic approaches. Cold Spring Harb Perspect Biol 10(4):22327–22328. https://doi.org/10.1101/CSHPERSPECT.A022327

Article  Google Scholar 

Zara JN et al (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17(9–10):1389. https://doi.org/10.1089/TEN.TEA.2010.0555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235(1):176–190. https://doi.org/10.1002/DVDY.20603

Article  CAS  PubMed  Google Scholar 

Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie ABM (2012) The role of vascular endothelial growth factor in ossification. Int J Oral Sci 4(2):64. https://doi.org/10.1038/IJOS.2012.33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu M et al (2014) E2F1 suppresses cardiac neovascularization by down-regulating VEGF and PlGF expression. Cardiovasc Res 104(3):412. https://doi.org/10.1093/CVR/CVU222

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif