Cordycepin production by a novel endophytic fungus Irpex lacteus CHG05 isolated from Cordyceps hawkesii Gray

Ancheeva E, Daletos G, Proksch P (2020) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27:1836–1854. https://doi.org/10.2174/0929867326666190916144709

CAS  Article  PubMed  Google Scholar 

Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M, Hadi S (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic Cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules 25:2735. https://doi.org/10.3390/molecules25122735

CAS  Article  PubMed Central  Google Scholar 

Chamyuang S, Owatworakit A, Honda Y (2019) New insights into cordycepin production in Cordyceps militaris and applications. Ann Transl Med 7: S78. https://doi.org/10.21037/atm.2019.04.12

Cunningham KG, Manson W, Spring FS, Hutchinson, SA (1950) Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166: 949. https://doi.org/10.1038/166949a0

Kang C, Wen TC, Kang JC, Meng ZB, Li GR, Hyde KD (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. The Scientific World J 2014:510627. https://doi.org/10.1155/2014/510627

CAS  Article  Google Scholar 

Kang N, Lee HH, Park I, Seo YS (2017) Development of high cordycepin-producing Cordyceps militaris Strains. Mycobiology 45:31–38. https://doi.org/10.5941/MYCO.2017.45.1.31

Article  PubMed  PubMed Central  Google Scholar 

Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI (2021) Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris-a review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi (basel) 7:986. https://doi.org/10.3390/jof7110986

CAS  Article  Google Scholar 

Khan MA, Tania M (2020) Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr Med Chem 27:983–996. https://doi.org/10.2174/0929867325666181001105749

CAS  Article  PubMed  Google Scholar 

Kim IW, Lee HB, Sim SH, Yang EI, Kim YS (2017) Bioactive compounds and antioxidant activities of sprout soybean fermented with Irpex lacteus mycelia. Food Sci Biotechnol 26:1563–1570. https://doi.org/10.1007/s10068-017-0231-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kluge J, Terfehr D, Kück U (2018) Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol 102:6357–6372. https://doi.org/10.1007/s00253-018-9115-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuhad RC, Kapoor RK, Lal R (2004) Improving the yield and quality of DNA isolated from white-rot fungi. Folia Microbiol (praha) 49:112–116. https://doi.org/10.1007/BF02931383

CAS  Article  Google Scholar 

Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 103:1681–1691. https://doi.org/10.1007/s00253-019-09623-3

CAS  Article  PubMed  Google Scholar 

Lee SK, Lee JH, Kim HR, Chun Y, Lee JH, Yoo HY, Park C, Kim SW (2019) Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 9:461. https://doi.org/10.3390/biom9090461

CAS  Article  PubMed Central  Google Scholar 

Lin LT, Lai YJ, Wu SC, Hsu WH, Tai CJ (2018) Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. J Food Drug Anal 26:135–144. https://doi.org/10.1016/j.jfda.2016.11.021

CAS  Article  PubMed  Google Scholar 

Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179:633–649. https://doi.org/10.1007/s12010-016-2020-0

CAS  Article  PubMed  Google Scholar 

Lou H, Ye Z, Yun F, Lin J, Guo L, Chen B, Mu Z (2018) Targeted gene deletion in Cordyceps militaris using the split-marker approach. Mol Biotechnol 60:380–385. https://doi.org/10.1007/s12033-018-0080-9

CAS  Article  PubMed  Google Scholar 

Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Progr 20:1408–1413. https://doi.org/10.1021/bp049765r

CAS  Article  Google Scholar 

Meng C, Han Q, Wang X, Liu X, Fan X, Liu R, Wang Q, Wang C (2019) Determination and quantitative comparison of nucleosides in two Cordyceps by HPLC-ESI-MS-MS. J Chromatogr Sci 57:426–433. https://doi.org/10.1093/chromsci/bmz012

CAS  Article  PubMed  Google Scholar 

Novotný C, Cajthaml T, Svobodová K, Susla M, Sasek V (2009) Irpex lacteus, a white-rot fungus with biotechnological potential–review. Folia Microbiol (praha) 54:375–390. https://doi.org/10.1007/s12223-009-0053-2

CAS  Article  Google Scholar 

Oh J, Yoon DH, Shrestha B, Choi HK, Sung GH (2019) Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 57:54–63. https://doi.org/10.1007/s12275-019-8486-z

CAS  Article  PubMed  Google Scholar 

Qin P, Li X, Yang H, Wang ZY, Lu D (2019) Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules 24:2231. https://doi.org/10.3390/molecules24122231

CAS  Article  PubMed Central  Google Scholar 

Ramakrishna N, Lacey J, Smith JE (1991) Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. Int J Food Microbiol 13:47–54. https://doi.org/10.1016/0168-1605(91)90135-c

CAS  Article  PubMed  Google Scholar 

Raman A, Wheatley W, Popay A (2012) Endophytic fungus-vascular plant-insect interactions. Environ Entomol 41:433–447. https://doi.org/10.1603/EN11317

CAS  Article  PubMed  Google Scholar 

Sadahiro Y, Kato H, Williams RM, Tsukamoto S (2020) Irpexine, an isoindolinone alkaloid produced by coculture of endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae. J Nat Prod 83:1368–1373. https://doi.org/10.1021/acs.jnatprod.0c00047

CAS  Article  PubMed  Google Scholar 

Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 63:e3064. https://doi.org/10.3791/3064

Sun CT, Wang JP, Shu Y, Cai XY, Hu JT, Zhang SQ, Cai L, Ding ZT (2020) A new tremulane sesquiterpene from Irpex lacteus by solid-state fermentation Nat Prod Res 1–6 https://doi.org/10.1080/14786419.2020.1806272

Shamly V, Kali A, Srirangaraj S, Umadevi S (2014) Comparison of microscopic morphology of fungi using lactophenol cotton blue (LPCB), iodine glycerol and congo red formaldehyde staining. J Clin Diagn Res 8: Dl01–2. https://doi.org/10.7860/JCDR/2014/8521.4535

Tang Y, Zhao ZZ, Feng T, Li ZH, Chen HP, Liu JK (2019) Triterpenes with unusual modifications from the fruiting bodies of the medicinal fungus Irpex lacteus. Phytochemistry 162:21–28. https://doi.org/10.1016/j.phytochem.2019.02.017

CAS  Article  PubMed  Google Scholar 

Wang M, Du JX, Hui-Xiang Y, Dai Q, Liu YP, He J, Wang Y, Li ZH, Feng T, Liu JK (2020) Sesquiterpenoids from cultures of the basidiomycetes Irpex lacteus. J Nat Prod 83:1524–1531. https://doi.org/10.1021/acs.jnatprod.9b01177

CAS  Article  PubMed  Google Scholar 

Wongsa B, Raethong N, Chumnanpuen P, Wong-Ekkabut J, Laoteng K, Vongsangnak W (2020) Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis. Genomics 112:629–636. https://doi.org/10.1016/j.ygeno.2019.04.015

CAS  Article  PubMed  Google Scholar 

Wu FC, Chen YL, Chang SM, Shih IL (2013) Cultivation of medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes), and production of cordycepin using the spent medium from levan fermentation. Int J Med Mushrooms 15:393–405. https://doi.org/10.1615/intjmedmushr.v15.i4.70

Article  PubMed  Google Scholar 

Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24(1479–1489):e4. https://doi.org/10.1016/j.chembiol.2017.09.001

CAS  Article  Google Scholar 

Yin HY, Yang XQ, Wang DL, Zhao TD, Wang CF, Yang YB, Ding ZT (2021) Antifeedant and antiphytopathogenic metabolites from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. Fitoterapia 148:104781. https://doi.org/10.1016/j.fitote.2020.104781

CAS  Article  PubMed  Google Scholar 

Zhang C, Li M, Li SJ, Chen LM, Wang HX, Xie S, Liu ZR, Hu JP (2016) Elementary studies on artificial cultivation of Cordyceps hawkesii. Jiangxi Science 34:576–578. (In Chinese). https://doi.org/10.13990/j.issn1001-3679.2016.05.003

Zhang H, Deng L, Zhang Z, Guan Y, Li B, Yang J, Fan H, Yang G, Chen X, Zhang J, Xin X, Vriesekoop F (2020) Enhanced Cordycepin Production in Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Mutated by a Multifunctional Plasma Mutagenesis System. Int J Med Mushrooms 22(12):1147–1159. https://doi.org/10.1615/IntJMedMushrooms.2020037153

Zhou QY, Yang XQ, Zhang ZX, Wang BY, Hu M, Yang YB, Zhou H, Ding ZT (2018) New azaphilones and tremulane sesquiterpene from endophytic Nigrospora oryzae cocultured with Irpex lacteus. Fitoterapia 130:26–30. https://doi.org/10.1016/j.fitote.2018.07.018

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif