A combined de novo assembly approach increases the quality of prokaryotic draft genomes

Andrews S (2010) FASTQC A quality control tool for high throughput sequence data. In: Babraham Inst. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. https://doi.org/10.1089/cmb.2012.0021

Article  PubMed  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu170

Article  PubMed  Google Scholar 

Bradnam KR, Fass JN, Alexandrov A et al (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience. https://doi.org/10.1186/2047-217X-2-10

Article  PubMed  Google Scholar 

Bugrysheva JV, Cherney B, Sue D et al (2016) Complete genome sequences for three chromosomes of the Burkholderia stabilis type strain (ATCC BAA-67). Genome Announc. https://doi.org/10.1128/genomeA.01294-16

Article  PubMed  Google Scholar 

Earl D, Bradnam K, St. John J et al (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res 21

Esmaeel Q, Issa A, Sanchez L et al (2018) Draft genome sequence of Burkholderia reimsis BE51, a plant-associated bacterium isolated from agricultural rhizosphere. Microbiol Resour Announc. https://doi.org/10.1128/mra.00978-18

Article  PubMed  Google Scholar 

Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.64483-0

Article  PubMed  Google Scholar 

Guizelini D, Raittz RT, Cruz LM et al (2016) GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep. https://doi.org/10.1038/srep34963

Article  PubMed  Google Scholar 

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btt086

Article  PubMed  Google Scholar 

Hollmann J, Brinks E, Schwake-Anduschus C et al (2019) Draft genome sequences of Pseudomonas sp. strains isolated from wheat in Germany. Microbiol Resour Announc https://doi.org/10.1128/mra.00178-19

Hunt M, Kikuchi T, Sanders M et al (2013) REAPR: a universal tool for genome assembly evaluation. Genome Biol. https://doi.org/10.1186/gb-2013-14-5-r47

Article  PubMed  Google Scholar 

Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.059774-0

Article  PubMed  Google Scholar 

Kolmogorov M, Raney B, Paten B, Pham S (2014) Ragout - a reference-assisted assembly tool for bacterial genomes. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu280

Article  PubMed  Google Scholar 

Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256. https://doi.org/10.1038/36786

CAS  Article  PubMed  Google Scholar 

Leong LEX, Lagana D, Carter GP et al (2018) Burkholderia lata infections from intrinsically contaminated chlorhexidine Mouthwash, Australia, 2016. Emerg Infect Dis 24

Liao X, Li M, Zou Y et al (2019) Current challenges and solutions of de novo assembly. Quant Biol

Lischer HEL, Shimizu KK (2017) Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics. https://doi.org/10.1186/s12859-017-1911-6

Article  PubMed  Google Scholar 

National Center for Biotechnology Information (NCBI) (1988) Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/genome. Accessed 2 Sep 2020

Økstad OA, Tourasse NJ, Stabell FB et al (2004) The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol 186:7714–7725. https://doi.org/10.1128/JB.186.22.7714-7725.2004

CAS  Article  PubMed  Google Scholar 

Owusu-Darko R, Allam M, de Oliveira SD et al (2019) Genome sequences of Bacillus sporothermodurans strains isolated from ultra-high-temperature milk. Microbiol Resour Announc. https://doi.org/10.1128/mra.00145-19

Article  PubMed  Google Scholar 

Page AJ, De Silva N, Hunt M et al (2016) Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genomics. https://doi.org/10.1099/mgen.0.000083

Article  Google Scholar 

Palevich N, Palevich FP, Maclean PH et al (2019) Draft genome sequence of Clostridium estertheticum subsp. laramiense DSM 14864T, isolated from spoiled uncooked beef. Microbiol Resour Announc. https://doi.org/10.1128/mra.01275-19

Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. https://doi.org/10.1093/bioinformatics/bts174

Article  PubMed  Google Scholar 

Prjibelski A, Antipov D, Meleshko D et al (2020) Using SPAdes de novo assembler. Curr Protoc Bioinforma. https://doi.org/10.1002/cpbi.102

Article  Google Scholar 

Ramasamy KP, Telatin A, Mozzicafreddo M et al (2019) Draft genome sequence of a new Pseudomonas sp. Strain, ef1, associated with the psychrophilic antarctic ciliate Euplotes focardii. Microbiol Resour Announc. https://doi.org/10.1128/mra.00867-19

Ricker N, Qian H, Fulthorpe RR (2012) The limitations of draft assemblies for understanding prokaryotic adaptation and evolution. Genomics. https://doi.org/10.1016/j.ygeno.2012.06.009

Article  PubMed  Google Scholar 

Seemann T (2013) barrnap 0.9 : rapid ribosomal RNA prediction. Github.Com

Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv351

Article  PubMed  Google Scholar 

Utturkar SM, Klingeman DM, Hurt RA, Brown SD (2017) A case study into microbial genome assembly gap sequences and finishing strategies. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01272

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif