How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression

Ahmed S, Thomas G, Ghoussaini M et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. https://doi.org/10.1038/ng.354

Ames S, Andring JT, McKenna R, Becker HM (2019) CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene. https://doi.org/10.1038/s41388-019-1098-6

Anastasiou D (2017) Tumour microenvironment factors shaping the cancer metabolism landscape. Br J Cancer 116(3):277–286. https://doi.org/10.1038/bjc.2016.412

CAS  CrossRef  PubMed  Google Scholar 

Anderberg C, Pietras K (2009) On the origin of cancer-associated fibroblasts. Cell Cycle 8(10):1461–1462. https://doi.org/10.4161/cc.8.10.8557

CAS  CrossRef  PubMed  Google Scholar 

Andersen AP, Moreira JM, Pedersen SF (2014) Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc L B Biol Sci 369(1638):20130098. https://doi.org/10.1098/rstb.2013.0098

CrossRef  Google Scholar 

Andersen AP, Samsoe-Petersen J, Oernbo EK et al (2018a) The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer 142(12):2529–2542. https://doi.org/10.1002/ijc.31276

CAS  CrossRef  PubMed  Google Scholar 

Andersen AP, Samsøe-Petersen J, Oernbo EK et al (2018b) The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer. https://doi.org/10.1002/ijc.31276

Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117(11):1583–1591. https://doi.org/10.1038/bjc.2017.356

CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Avgustinova A, Iravani M, Robertson D et al (2016) Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. https://doi.org/10.1038/ncomms10305

Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G, Wagner CA (2010) Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Ren Physiol 299(1):F141–F154. https://doi.org/10.1152/ajprenal.00488.2009

CAS  CrossRef  Google Scholar 

Benos DJ, McPherson S, Hahn BH, Chaikin MA, Benveniste EN (1994) Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. J Biol Chem 269(19):13811–13816

CAS  CrossRef  Google Scholar 

Bhuria V, Xing J, Scholta T et al (2019) Hypoxia induced sonic hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2019.111671

Biddle A, Liang X, Gammon L et al (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71(15):5317–5326. https://doi.org/10.1158/0008-5472.CAN-11-1059

CAS  CrossRef  PubMed  Google Scholar 

Boedtkjer E (2019) Na(+),HCO3(−) cotransporter NBCn1 accelerates breast carcinogenesis. Cancer Metastasis Rev 38(1–2):165–178. https://doi.org/10.1007/s10555-019-09784-7

CAS  CrossRef  PubMed  Google Scholar 

Boedtkjer E, Pedersen SF (2020) The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 82:103–126. https://doi.org/10.1146/annurev-physiol-021119-034627

CAS  CrossRef  PubMed  Google Scholar 

Boedtkjer E, Praetorius J, Matchkov VV et al (2011) Disruption of NA +,HCO 3- cotransporter NBCn1 (slc4a7) Inhibits no-mediated vasorelaxation, smooth muscle ca 2+ sensitivity, and hypertension development in mice. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.110.015974

Boedtkjer E, Moreira JMA, Mele M et al (2013) Contribution of Na+,HCO3--cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer. https://doi.org/10.1002/ijc.27782

Boidot R, Vegran F, Meulle A et al (2012) Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72(4):939–948. https://doi.org/10.1158/0008-5472.CAN-11-2474

CAS  CrossRef  PubMed  Google Scholar 

Bonde L, Boedtkjer E (2017) Extracellular acidosis and very low [Na(+) ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol 221(2):129–141. https://doi.org/10.1111/apha.12877

CAS  CrossRef  Google Scholar 

Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Borghese C, Cattaruzza L, Pivetta E et al (2013) Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity. J Cell Biochem. https://doi.org/10.1002/jcb.24456

Brand A, Singer K, Koehl GE et al (2016) LDHA-associated lactic acid production blunts tumor Immunosurveillance by T and NK cells. Cell Metab 24(5):657–671. https://doi.org/10.1016/j.cmet.2016.08.011

CAS  CrossRef  PubMed  Google Scholar 

Bronzert DA, Pantazis P, Antoniades HN et al (1987) Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.84.16.5763

Brown TP, Bhattacharjee P, Ramachandran S et al (2020) The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. https://doi.org/10.1038/s41388-020-1216-5

Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer. https://doi.org/10.1038/nrc2544

Calcinotto A, Filipazzi P, Grioni M et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-11-1272

Carnero A, Lleonart M (2016) The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays 38(Suppl 1):S65–S74. https://doi.org/10.1002/bies.201670911

CrossRef  PubMed  Google Scholar 

Cesar-Razquin A, Snijder B, Frappier-Brinton T et al (2015) A call for systematic research on solute carriers. Cell 162(3):478–487. https://doi.org/10.1016/j.cell.2015.07.022

CAS  CrossRef  PubMed  Google Scholar 

Chafe SC, Lou YM, Sceneay J et al (2015) Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res 75(6):996–1008. https://doi.org/10.1158/0008-5472.Can-14-3000

CAS  CrossRef  PubMed  Google Scholar 

Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.95.20.11715

Chauhan VP, Boucher Y, Ferrone CR et al (2014) Compression of pancreatic tumor blood vessels by Hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell. https://doi.org/10.1016/j.ccr.2014.06.003

Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115. https://doi.org/10.1038/s41573-018-0004-1

CAS  CrossRef  PubMed  Google Scholar 

Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276(12):9519–9525. https://doi.org/10.1074/jbc.M010144200

CAS  CrossRef  PubMed  Google Scholar 

Chen LM, Choi I, Haddad GG, Boron WF (2007) Chronic continuous hypoxia decreases the expression of SLC4A7 (NBCn1) and SLC4A10 (NCBE) in mouse brain. Am J Physiol Regul Integr Comp Physiol 293(6):R2412–R2420. https://doi.org/10.1152/ajpregu.00497.2007

CAS  CrossRef  PubMed  Google Scholar 

Chen B, Wang Z, Sun J et al (2016) A tenascin C targeted nanoliposome with navitoclax for specifically eradicating of cancer-associated fibroblasts. Nanomedicine 12(1):131–141. https://doi.org/10.1016/j.nano.2015.10.001

CAS  CrossRef  PubMed  Google Scholar 

Cheng Y, Ma XL, Wei YQ, Wei XW (2019) Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. https://doi.org/10.1016/j.bbcan.2019.01.005

Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14(4):771–794. https://doi.org/10.1111/j.1582-4934.2009.00994.x

CAS  CrossRef  PubMed  Google Scholar 

Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17(10):577–593. https://doi.org/10.1038/nrc.2017.77

CAS  CrossRef  PubMed  Google Scholar 

Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. DMM Dis Model Mech. https://doi.org/10.1242/dmm.004077

Cox TR, Bird D, Baker AM et al (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-12-2233

Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr 6(3):220–230. https://doi.org/10.4161/cam.20875

CrossRef  Google Scholar 

Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450(6):363–371. https://doi.org/10.1007/s00424-005-1413-7

CAS  CrossRef  PubMed  Google Scholar 

Damaghi M, Gillies R (2017) Phenotypic changes of acid-adapted cancer cells push them toward aggressiveness in their evolution in the tumor microenvironment. Cell Cycle. https://doi.org/10.1080/15384101.2016.1231284

De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

CAS  CrossRef  PubMed  Google Scholar 

Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8(6):425–437. https://doi.org/10.1038/nrc2397

CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Dhup S, Kumar Dadhich R, Ettore Porporato P, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. https://doi.org/10.2174/138161212799504902

Diebold L, Chandel NS (2016) Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2016.04.198

Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123(9):3685–3692. https://doi.org/10.1172/JCI69741

CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Dovmark TH, Saccomano M, Hulikova A, Alves F, Swietach P (2017) Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene 36(32):4538–4550. https://doi.org/10.1038/onc.2017.71

CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1):11–22. https://doi.org/10.1038/nrc1252

CAS  CrossRef  PubMed  Google Scholar 

Dufort CC, Delgiorno KE, Hingorani SR (2016) Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology. https://doi.org/10.1053/j.gastro.2016.03.040

Feng J, Yang H, Zhang Y et al (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42):5829–5839. https://doi.org/10.1038/onc.2017.188

CAS  CrossRef  PubMed  Google Scholar 

Filatova A, Seidel S, Bogurcu N, Graf S, Garvalov BK, Acker T (2016) Acidosis acts through HSP90 in a PHD/VHL-independent manner to promote HIF function and stem cell maintenance in Glioma. Cancer Res 76(19):5845–5856. https://doi.org/10.1158/0008-5472.Can-15-2630

CAS  CrossRef  PubMed  Google Scholar 

Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. https://doi.org/10.1182/blood-2006-07-035972

CAS  CrossRef  PubMed  Google Scholar 

Flinck M, Kramer

留言 (0)

沒有登入
gif