Hypoxia and Hematopoiesis

1.

Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150–61.

CAS  PubMed  Google Scholar 

2.

Spencer JA, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

CAS  PubMed  PubMed Central  Google Scholar 

3.

Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157(1):41–50.

CAS  PubMed  PubMed Central  Google Scholar 

4.

Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335–44.

CAS  PubMed  Google Scholar 

5.

Lord BI, Testa NG, Hendry JH. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood. 1975;46(1):65–72.

CAS  PubMed  Google Scholar 

6.

Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

CAS  PubMed  Google Scholar 

7.

May M, Slaughter A, Lucas D. Dynamic regulation of hematopoietic stem cells by bone marrow niches. Curr Stem Cell Rep. 2018;4(3):201–8.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Mantel CR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161(7):1553–65.

CAS  PubMed  PubMed Central  Google Scholar 

9.••

Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303-320. This review comprehensively covers our current knowledge on HSC activity and their interaction with other supporting cells within the BM niche.

10.••

Tikhonova AN, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569(7755):222-228.  This study maps the BM vasculature, perivasculature, and osteoblast niche at a single-cell resolution in not only homeostasis but also stree hematopoiesis.

11.•

Umemoto T, et al. Ca(2+)-mitochondria axis drives cell division in hematopoietic stem cells. J Exp Med. 2018;215(8):2097-2113. This study shows quiescent HSCs demonstrate low mitochondrial membrane potential.

12.

Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48(4):632–48.

CAS  PubMed  PubMed Central  Google Scholar 

14.••

Christodoulou C, et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature. 2020;578(7794):278-283.  This study demonstrates HSCs reside in approximately 3% O2 tension in the BM niche.

15.

Parmar K, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104(13):5431–6.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Roy S, et al. Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol. 2012;88(5):396–405.

CAS  PubMed  Google Scholar 

17.

Ivanović Z, et al. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br J Haematol. 2000;108(2):424–9.

PubMed  Google Scholar 

18.

Paredes-Gamero EJ, Barbosa CM, Ferreira AT. Calcium signaling as a regulator of hematopoiesis. Front Biosci (Elite Ed). 2012;4:1375–84.

Google Scholar 

19.•

Luchsinger LL, et al. Harnessing hematopoietic stem cell low intracellular calcium improves their maintenance in vitro. Cell Stem Cell. 2019;25(2):225-240.e7 This article is the first to identify the importance of intracellular calcium levels in HSC maintenance.

20.

Broxmeyer HE, et al. Numbers of long-term hematopoietic stem cells from bone marrow of fanca and fancc knockout mice can be greatly enhanced by their collection and processing in physioxia conditions. Blood Cells Mol Dis. 2021;86:102492.

21.

Doetsch F, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.

CAS  PubMed  Google Scholar 

22.

Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001;97(8):2293–9.

CAS  PubMed  Google Scholar 

23.

Quiñones-Hinojosa A, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494(3):415–34.

PubMed  Google Scholar 

24.

Itkin T, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532(7599):323–8.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Schoeters GE, Vanderboroght OL. Haemopoietic stem cell concentration and CFUs in DNA synthesis in bone marrow from different bone regions. Experientia. 1980;36(4):459–61.

CAS  PubMed  Google Scholar 

26.

Eliasson P, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol. 2010;38(4):301-310.e2.

CAS  PubMed  Google Scholar 

27.

Harrison JS, et al. Oxygen saturation in the bone marrow of healthy volunteers, in Blood. United States. 2002;p. 394.

28.

Mas-Bargues C, et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine. Int J Mol Sci. 2019;20(5).

29.

Ceradini DJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

CAS  PubMed  Google Scholar 

30.

Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

CAS  PubMed  PubMed Central  Google Scholar 

31.

Kunisaki Y, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

CAS  PubMed  PubMed Central  Google Scholar 

33.

Kiel MJ, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Winkler IG, et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116(3):375–85.

CAS  PubMed  Google Scholar 

35.

Telford WG, et al. Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem Cells. 2007;25(4):1029–36.

CAS  PubMed  Google Scholar 

36.

Lo Celso C, Lin CP, Scadden DT. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc. 2011;6(1):1–14.

37.

Christodoulou, C., et al., Live-animal imaging of native haematopoietic stem and progenitor cells. Nature, 2020. 578(7794): p. 278-283.

38.

Turcotte R, et al. Image-guided transplantation of single cells in the bone marrow of live animals. Sci Rep. 2017;7(1):3875.

PubMed  PubMed Central  Google Scholar 

39.

Nombela-Arrieta C, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.

CAS  PubMed  PubMed Central  Google Scholar 

40.

Huang X, et al. Hypoxia signaling pathway in stem cell regulation: good and evil. Curr Stem Cell Rep. 2018;4(2):149–57.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Broxmeyer HE, et al. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr Opin Hematol. 2015;22(4):273–8.

CAS  PubMed  PubMed Central  Google Scholar 

42.

Lin Q, et al. Oxygen and cell fate decisions. Gene Regul Syst Bio. 2008;2:43–51.

CAS  PubMed  PubMed Central  Google Scholar 

43.

Chandel NS, et al. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol. 2016;18(8):823–32.

CAS  PubMed  Google Scholar 

44.

Adelman DM, Maltepe E, Simon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 1999;13(19):2478–83.

CAS  PubMed  PubMed Central  Google Scholar 

45.

Silberstein L, et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 2016;19(4):530–43.

CAS  PubMed  PubMed Central  Google Scholar 

46.

Lassailly F, et al. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood. 2013;122(10):1730–40.

CAS  PubMed  Google Scholar 

47.

Carrelha J, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554(7690):106–11.

CAS  PubMed  Google Scholar 

48.

Semenza GL. Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2010;2(3):336–61.

CAS  PubMed  Google Scholar 

49.

Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors–similar but not identical. Mol Cells. 2010;29(5):435–42.

CAS  PubMed  Google Scholar 

50.

Guitart AV, et al. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood. 2013;122(10):1741–5.

CAS  PubMed  Google Scholar 

51.

Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol. 2011;76:347–53.

CAS  PubMed  Google Scholar 

52.

Takubo K, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402.

CAS 

留言 (0)

沒有登入
gif