MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel

1.

Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity. 2020;6: 33.

2.•

Moll G, Hoogduijn MJ, Ankrum JA. Editorial: Safety, efficacy and mechanisms of action of mesenchymal stem cell therapies Front Immunol. 2020;11:243. Provides crucial informations regarding MSCs' application in clinical trial with safety and efficacy and their underlying mechanism of action.

3.•

Giri J, Galipeau J. Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match Blood Adv. 2020;4:1987-1997 Demonstrates MSCs' drug deployment strategies for human clinical trials to improve MSCs engraftment and therapeutic effect.

4.

Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS Jr. Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front Immunol. 2019;10:1645.

CAS  PubMed  Google Scholar 

5.

Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringden O, Volk HD, Geissler S, Reinke P. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med. 2019;25:149–63.

PubMed  Google Scholar 

6.

Moll G, Geissler S, Catar R, Ignatowicz L, Hoogduijn MJ, Strunk D, Bieback K, Ringden O. Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol. 2016;951:77–98.

CAS  PubMed  Google Scholar 

7.

Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18:101–15.

CAS  PubMed  Google Scholar 

8.

Institute of Medicine Committee on creating a vision for space medicine during travel beyond Earth O. In Safe Passage: Astronaut Care for Exploration Missions, ed. JR Ball, CH Evans, Jr. Washington (DC): National Academies Press (US). 2001.

9.

NASA. The Human Body in Space. 2021. https://www.nasa.gov/hrp/bodyinspace

10.••

Edwars M, Abadie L. NASA Human Research Strategic Communications: NASA’s Twins Study Results Published in Science Journal. 2019. https://www.nasa.gov/feature/nasa-s-twins-study-results-published-in-science. First comparative study between twin brothers with similar genetic background to identify physiological, molecular, and cognitive changes that could occur to a human subjecting spaceflight hazards.

11.

Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364.

12.

Logsdon JM. Space Exploration. 2021. https://www.britannica.com/science/space-exploration. Encyclopedia Britannica

13.

Aubourg L. Final frontier: Billionaires Branson and Bezos bound for space. 2021. https://phys.org/news/2021-07-frontier-billionaires-branson-bezos-bound.html

14.

Ahmed I. World's richest man Jeff Bezos blasts into space. 2021. https://phys.org/news/2021-07-world-richest-jeff-bezos-blasts.html

15.

Branson R. Flying to space onboard Virgin Galactic. 2021. https://www.virgin.com/branson-family/richard-branson-blog/flying-to-space-onboard-virgin-galactic?utm_medium=social&utm_source=linkedin&utm_author=richard&utm_type=editorial

16.

Aubourg L. SpaceX to launch private, all-civilian crew into Earth orbit. 2021. https://phys.org/news/2021-09-spacex-private-all-civilian-crew-earth.html.

17.

Dunn M. SpaceX launches 4 amateurs on private Earth-circling trip. 2021. https://phys.org/news/2021-09-spacex-amateurs-private-earth-circling.html.

18.

Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JP, Foster E, Gray GW, Hamilton DR, Holland DA, Jennings RT, Johnston SL, Jones JA, Kerwin JP, Locke J, Polk JD, Scarpa PJ, Sipes W, Stepanek J, Webb JT, Committee AH, Assoc SM, Surg SNF. Human health and performance for long-duration spaceflight. Aviat Space Environ Med. 2008;79:629–35.

PubMed  Google Scholar 

19.

Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for “Living in Space.” Biomed Res Int. 2020.

20.

Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. Npj Microgravity. 2017;3:14.

PubMed  Google Scholar 

21.

Chancellor JC, Scott GB, Sutton JP. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life (Basel). 2014;4:491–510.

Google Scholar 

22.

Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol. 2018;15:167–80.

PubMed  Google Scholar 

23.

Waterland RA. Assessing the effects of high methionine intake on DNA methylation. J Nutr. 2006;136:1706S-S1710.

CAS  PubMed  Google Scholar 

24.

Müller AM, Huppertz S, Henschler R. Hematopoietic stem cells in regenerative medicine: astray or on the path? Transfus Med Hemother. 2016;43:247–54.

PubMed  Google Scholar 

25.

Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine. 2019;4:22.

26.

Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004–2018: is efficacy optimal in a narrow dose range? Stem Cells Transl Med. 2020;9:17–27.

CAS  PubMed  Google Scholar 

27.

Mankins JC. Technology Readiness Levels (Advanced Concepts Office, Office of Space Access and Technology, NASA). 1995. https://aiaa.kavi.com/apps/group_public/download.php/2212/TRLs_MankinsPaper_1995.pdf. White Paper

28.

Mankins JC. Technology readiness assessments: a retrospective. https://www.sciencedirect.com/science/article/pii/S0094576509002008. Acta Astronaut. 2009;65: 1216–23

29.

Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, Szer J, Lipton J, Schwendener A, Gratwohl M, Frauendorfer K, Niederwieser D, Horowitz M, Kodera Y. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303:1617–24.

CAS  PubMed  Google Scholar 

30.

Gratwohl A, Baldomero H, Gratwohl M, Aljurf MD, Bouzas LF, Horowitz M, Kodera Y, Lipton J, Iida M, Pasquini MC, Passweg J, Szer J, Madrigal A, Frauendorfer K, Niederwieser D. Quantitative and qualitative differences in use and trends of hematopoietic stem cell transplantation: a Global Observational Study. Haematologica. 2013.

31.

Gratwohl A, Mohty M, Apperley J. The EBMT: history, present, and future. In The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, ed. th, E Carreras, C Dufour, M Mohty, N Kroger, pp. 11–7. Cham (CH) 2019.

32.

Prockop DJ, Prockop SE, Bertoncello I. Are clinical trials with mesenchymal stem/progenitor cells too far ahead of the science? Lessons from experimental hematology. Stem Cells. 2014;32:3055–61.

CAS  PubMed  Google Scholar 

33.

Reis M, Ogonek J, Qesari M, Borges NM, Nicholson L, Preussner L, Dickinson AM, Wang XN, Weissinger EM, Richter A. Recent developments in cellular Immunotherapy for HSCT-associated complications. Front Immunol. 2016;7:500.

PubMed  Google Scholar 

34.

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

CAS  PubMed  Google Scholar 

35.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

CAS  PubMed  Google Scholar 

36.

Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk H-D, Reinke P. MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front Immunol. 2020;11.

37.

Moll G, Ankrum JA, Olson SD, Nolta JA. Improved MSC minimal criteria to maximize patient safety: a call to embrace tissue factor and hemocompatibility assessment of MSC products. Stem Cells Transl Med. 2022.

38.

Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, Zhang C, Countryman S, Stodieck L, Zubair AC. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity. 2020;6:16.

CAS  PubMed  Google Scholar 

39.

Kim MHY, George KA, Cucinotta FA. Evaluation of skin cancer risk for lunar and Mars missions. Space Life Sciences: Flight Measurements, Calibration of Detectors and Environmental Models for Radiation Analysis. 2006;37:1798–803.

Google Scholar 

40.

Meerman M, Bracco Gartner TCL, Buikema JW, Wu SM, Siddiqi S, Bouten CVC, Grande-Allen KJ, Suyker WJL, Hjortnaes J. Myocardial disease and long-distance space travel: solving the radiation problem. Front Cardiovasc Med. 2021;8:631985.

41.

Wilson JM, Sanzari JK, Diffenderfer ES, Yee SS, Seykora JT, Maks C, Ware JH, Litt HI, Reetz JA, McDonough J, Weissman D, Kennedy AR, Cengel KA. Acute biological effects of simulating the whole-body radiation dose distribution from a solar particle event using a porcine model. Radiat Res. 2011;176:649–59.

CAS  PubMed  Google Scholar 

42.

Sanzari JK, Wan XS, Wroe AJ, Rightnar S, Cengel KA, Diffenderfer ES, Krigsfeld GS, Gridley DS, Kennedy AR. Acute hematological effects of solar particle event proton radiation in the porcine model. Radiat Res. 2013;180:7–16.

CAS  PubMed  Google Scholar 

43.

Sanzari JK, Romero-Weaver AL, James G, Krigsfeld G, Lin L, Diffenderfer ES, Kennedy AR. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure. PLoS One. 2013;8:e71757.

44.

Barthel J, Sarigul-Klijn N. A review of radiation shielding needs and concepts for space voyages beyond Earth's magnetic influence. Prog. Aerosp. Sci. 2019;110

45.

Kudoh T, Ikushima H, Honda E. Shielding effect of a customized intraoral mold including lead material in high-dose-rate 192-Ir brachytherapy for oral cavity cancer. J Radiat Res. 2012;53:130–7.

PubMed  Google Scholar 

46.

Durante M, Cucinotta FA. Physical basis of radiation protection in space travel. Rev Mod Phys. 2011;83:1245–81.

CAS  Google Scholar 

47.

McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017;88:665–76.

PubMed  Google Scholar 

48.

Broderick C, Forster R, Abdel-Hadi M, Salhiyyah K. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2020;10: Cd005262

49.

Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12:738–47.

CAS  PubMed  Google Scholar 

50.

Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15:360–71.

PubMed  Google Scholar 

51.

King M, Joseph S, Albert A, Thomas TV, Nittala MR, Woods WC, Vijayakumar S, Packianathan S. Use of amifostine for cytoprotection during radiation therapy: a review. Oncology. 2020;98:61–80.

CAS  PubMed  Google Scholar 

52.

Langell J, Jennings R, Clark J, Ward JB Jr. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat Space Environ Med. 2008;79:651–60.

CAS  PubMed  Google Scholar 

53.

Crucian BE, Choukèr A, Simpson RJ, Mehta S, Marshall G, Smith SM, Zwart SR, Heer M, Ponomarev S, Whitmire A, Frippiat JP, Douglas GL, Lorenzi H, Buchheim JI, Makedonas G, Ginsburg GS, Ott CM, Pierson DL, Krieger SS, Baecker N, Sams C. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front Immunol. 2018;9:1437.

PubMed  Google Scholar 

54.

Ponomarev S, Kalinin S, Sadova A, Rykova M, Orlova K, Crucian B. Immunological aspects of isolation and confinement. Front Immunol. 2021;12: 697435.

55.

DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular therapies for treatment of radiation injury: report from a NIH/NIAID and IRSN workshop. Radiat Res. 2017;188:e54–75.

CAS  PubMed  Google Scholar 

56.

Rios C, Jourdain JR, DiCarlo AL. Cellular therapies for treatment of radiation injury after a mass casualty incident. Radiat Res. 2017;188:242–5.

CAS  PubMed  Google Scholar 

57.

Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. Curr Stem Cell Rep. 2020;6:77–85.

CAS  PubMed  Google Scholar 

58.

The-Eurpean-Space-Agency. Growing stem cells for deep space exploration. 2020. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Growing_stem_cells_for_deep_space_exploration.

59.

Zubair A. Studying stem cells in space for the benefit of humankind on Earth and beyond. 2020. https://www.issnationallab.org/iss360/stem-cell-research-results-published-zubair/.

60.

Chinnadurai R, Bates PD, Kunugi KA, Nickel KP, DeWerd LA, Capitini CM, Galipeau J, Kimple RJ. Dichotomic potency of IFNγ licensed allogeneic mesenchymal stromal cells in animal models of acute radiation syndrome and graft versus host disease. Front Immunol. 2021;12.

61.

Blaber E, Sato K, Almeida EA. Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. 2014;23(Suppl 1):73–8.

PubMed  Google Scholar 

62.

Nicolay NH, Lopez Perez R, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6:19366–80.

PubMed  Google Scholar 

63.

Wang KX, Cui WW, Yang X, Tao AB, Lan T, Li TS, Luo L. Mesenchymal stem cells for mitigating radiotherapy side effects. Cells. 2021;10.

64.

Pinzur L, Akyuez L, Levdansky L, Blumenfeld M, Volinsky E, Aberman Z, Reinke P, Ofir R, Volk HD, Gorodetsky R. Rescue from lethal acute radiation syndrome (ARS) with severe weight loss by secretome of intramuscularly injected human placental stromal cells. J Cachexia Sarcopenia Muscle. 2018;9:1079–92.

PubMed  Google Scholar 

65.

Winkler T, Perka C, von Roth P, Agres AN, Plage H, Preininger B, Pumberger M, Geissler S, Hagai EL, Ofir R, Pinzur L, Eyal E, Stoltenburg-Didinger G, Meisel C, Consentius C, Streitz M, Reinke P, Duda GN, Volk HD. Immunomodulatory placental-expanded, mesenchymal stromal cells improve muscle function following hip arthroplasty. J Cachexia Sarcopenia Muscle. 2018;9:880–97.

留言 (0)

沒有登入
gif