Mesoporous SBA-15 Silica–Loaded Nano-formulation of Quercetin: A Probable Radio-Sensitizer for Lung Carcinoma

1. Travis, W, Rekhtman, N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: Strategic management of tissue for molecular testing. Semin Respir Crit Care Med. 2011;32(1):022-031. doi:10.1055/s-0031-1272866
Google Scholar | Crossref | Medline2. Fu, XL, Zhu, XZ, Shi, DR, et al. Study of prognostic predictors for non-small cell lung cancer. Lung Cancer. 1999;23(2):143-152. doi:10.1016/S0169-5002(99)00009-4
Google Scholar | Crossref | Medline | ISI3. Parashar, B, Arora, S, Wernicke, A. Radiation therapy for early stage lung cancer. Semin Intervent Radiol. 2013;30(2):185-190. doi:10.1055/s-0033-1342960
Google Scholar | Crossref | Medline4. Xingyu, Z, Peijie, M, Dan, P, et al. Quercetin suppresses lung cancer growth by targeting aurora b kinase. Cancer Med. 2016;5(11):3156-3165. doi:10.1002/cam4.891
Google Scholar | Crossref | Medline5. Hariri, G, Han, Z, Hallahan, D. Radiation-guided drug delivery of nanoparticle albumin-bound paclitaxel to lung cancer. Int J Radiat Oncol. 2008;72(1):S705-S706. doi:10.1016/j.ijrobp.2008.06.531
Google Scholar | Crossref6. Shi, S, Vissapragada, R, Abi Jaoude, J, et al. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater. 2020;5(2):233-240. doi:10.1016/j.bioactmat.2020.01.011.
Google Scholar | Crossref | Medline7. Li, Y, Wang, Z, Jin, J, et al. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting notch-1 pathway. Biochem Biophys Res Commun. 2020;523(4):947-953. doi:10.1016/j.bbrc.2020.01.048
Google Scholar | Crossref | Medline8. Baskar, R, Lee, KA, Yeo, R, Yeoh, KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 2012;9(3):193-199. doi:10.7150/ijms.3635
Google Scholar | Crossref | Medline9. Fan, W, Bu, W, Zhang, Z, et al. X-ray radiation-controlled no-release for on-demand depth-independent hypoxic radiosensitization. Angew Chem Int Ed. 2015;54(47):14026-14030. doi:10.1002/anie.201504536
Google Scholar | Crossref | Medline10. Song, G, Chen, Y, Liang, C, et al. Catalase-loaded taox nanoshells as bio-nanoreactors combining high-z element and enzyme delivery for enhancing radiotherapy. Adv Mater. 2016;28(33):7143-7148. doi:10.1002/adma.201602111
Google Scholar | Crossref | Medline11. Huang, C, Chen, T, Zhu, D, Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem. 2020;8:8. doi:10.3389/fchem.2020.00225
Google Scholar | Crossref | Medline12. Bigdeli, B, Goliaei, B, Masoudi-Khoram, N, et al. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired dna repair and increased apoptosis. Toxicol Appl Pharmacol. 2016;313:180-194. doi:10.1016/j.taap.2016.10.021
Google Scholar | Crossref | Medline13. Wang, Q, Chen, Y, Lu, H, et al. Quercetin radiosensitizes non‐small cell lung cancer cells through the regulation of mir‐16‐5p/wee1 axis. IUBMB Life. 2020;72(5):1012-1022. doi:10.1002/iub.2242
Google Scholar | Crossref | Medline14. Kang, J, Kim, E, Kim, W, et al. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (emt) by mir-34a-mediated suppression of notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem. 2013;288(38):27343-27357. doi:10.1074/jbc.M113.490482
Google Scholar | Crossref | Medline15. Wang, Y, Yu, H, Wang, S, et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C. 2021;119:111442. doi:10.1016/j.msec.2020.111442
Google Scholar | Crossref | Medline16. Lin, C, Yu, Y, Zhao, H, Yang, A, Yan, H, Cui, Y. Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol. 2012;104(3):395-400. doi:10.1016/j.radonc.2011.10.023
Google Scholar | Crossref | Medline17. Kale, A, Ö, P, Baş, Y, et al. Neuroprotective effects of quercetin on radiation-induced brain injury in rats. J Radiat Res. 2018;59(4):404-410. doi:10.1093/jrr/rry032
Google Scholar | Crossref | Medline18. Pérez-Cano, FJ, Castell, M. Flavonoids, inflammation and immune system. Nutrients. 2016;8(10):659. doi:10.3390/nu8100659
Google Scholar | Crossref19. Chang, JH, Lai, SL, Chen, WS, et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent akt activation and snail-independent adam9 expression pathways. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1746-1758. doi:10.1016/j.bbamcr.2017.06.017
Google Scholar | Crossref | Medline20. Mukherjee, A, Mishra, S, Kotla, NK, et al. Semisynthetic quercetin derivatives with potent antitumor activity in colon carcinoma. ACS Omega. 2019;4(4):7285-7298. doi:10.1021/acsomega.9b00143
Google Scholar | Crossref21. Zheng, SY . Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol Med Rep. 2011;5(3):822-826. doi:10.3892/mmr.2011.726
Google Scholar | Crossref | Medline22. Ma, T, Liu, Y, Wu, Q, et al. Quercetin-modified metal–organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano. 2019;13(4):4209-4219. doi:10.1021/acsnano.8b09221
Google Scholar | Crossref | Medline23. Gibellini, L, Pinti, M, Nasi, M, et al. Quercetin and cancer chemoprevention. Evidence-Based Complement. Altern Med. 2011;2011:591356. doi:10.1093/ecam/neq053
Google Scholar | Crossref24. Gong, C, Yang, Z, Zhang, L, Wang, Y, Gong, W, Liu, Y. Quercetin suppresses dna double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther. 2017;11:17-27. doi:10.2147/OTT.S147316
Google Scholar | Crossref | Medline25. Han, EJ, Im, CN, Park, SH, Moon, EY, Hong, SH. Combined treatment with peroxisome proliferator-activated receptor (ppar) gamma ligands and gamma radiation induces apoptosis by pparγ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung. Int J Radiat Oncol. 2013;85(5):e239-e248. doi:10.1016/j.ijrobp.2012.11.040
Google Scholar | Crossref | Medline26. Liu, H, Xue, JX, Li, X, Ao, R, Lu, Y. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol Lett. 2013;6(2):453-459. doi:10.3892/ol.2013.1365
Google Scholar | Crossref | Medline27. Madamanchi, NR, Hakim, ZS, Runge, MS. Oxidative stress in atherogenesis and arterial thrombosis: The disconnect between cellular studies and clinical outcomes. J Thromb Haemost. 2005;3(2):254-267. doi:10.1111/j.1538-7836.2004.01085.x
Google Scholar | Crossref | Medline28. Rauf, A, Imran, M, Khan, IA, et al. Anticancer potential of quercetin: A comprehensive review. Phyther Res. 2018;32(11):2109-2130. doi:10.1002/ptr.6155
Google Scholar | Crossref | Medline29. Gao, X, Huang, N, Shi, H, et al. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomed. 2015;10:2051-2063. doi:10.2147/IJN.S75550
Google Scholar | Crossref | Medline30. Vafadar, A, Shabaninejad, Z, Movahedpour, A, et al. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10(1):32. doi:10.1186/s13578-020-00397-0
Google Scholar | Crossref | Medline31. Verma, P, Kuwahara, Y, Mori, K, Raja, R, Yamashita, H. Functionalized mesoporous sba-15 silica: recent trends and catalytic applications. Nanoscale. 2020;12(21):11333-11363. doi:10.1039/D0NR00732C
Google Scholar | Crossref | Medline32. Liu, B, Jiang, T, Zheng, H, et al. Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale. 2017;9(19):6380-6390. doi:10.1039/C7NR01988B
Google Scholar | Crossref | Medline33. Mishra, S, Manna, K, Kayal, U, et al. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. RSC Adv. 2020;10(39):23148-23164. doi:10.1039/D0RA00664E
Google Scholar | Crossref34. Vavsari, VF, Ziarani, GM, Badiei, A. The role of SBA-15 in drug delivery. RSC Adv. 2015;5(111):91686-91707. doi:10.1039/C5RA17780D
Google Scholar | Crossref35. Björk, EM . Synthesizing and characterizing mesoporous silica SBA-15: A hands-on laboratory experiment for undergraduates using various instrumental techniques. J Chem Educ. 2017;94(1):91-94. doi:10.1021/acs.jchemed.5b01033
Google Scholar | Crossref36. Pirez, C, Morin, JC, Manayil, JC, Lee, AF, Wilson, K. Sol-gel synthesis of SBA-15: impact of HCl on surface chemistry. Microporous Mesoporous Mater. 2018;271:196-202. doi:10.1016/j.micromeso.2018.05.043
Google Scholar | Crossref37. Park, SY, Pendleton, P. Mesoporous silica SBA-15 for natural antimicrobial delivery. Powder Technol. 2012;223:77-82. doi:10.1016/j.powtec.2011.08.020
Google Scholar | Crossref38. Stern, R . Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol. 2009;18(4):238-243. doi:10.1016/B978-012374178-3.10001-8
Google Scholar | Crossref39. Ali, A, Mishra, S, Kamaal, S, et al. Evaluation of catacholase mimicking activity and apoptosis in human colorectal carcinoma cell line by activating mitochondrial pathway of copper(II) complex coupled with 2-(quinolin-8-yloxy)(methyl)benzonitrile and 8-hydroxyquinoline. Bioorg Chem. 2021;106:104479. doi:10.1016/j.bioorg.2020.104479
Google Scholar | Crossref | Medline40. Mohammed, MO, Alkubaisi, HMM, Haj, NQ. A new prodrug and bioactivity evaluation of methotrexate based on chitosan. Heliyon. 2020;6(6):e04223. doi:10.1016/j.heliyon.2020.e04223
Google Scholar | Crossref | Medline41. Sato, K, Nishii, T, Sato, A, Tatsunami, R. Autophagy activation is required for homocysteine-induced apoptosis in bovine aorta endothelial cells. Heliyon. 2020;6(1):e03315. doi:10.1016/j.heliyon.2020.e03315
Google Scholar | Crossref | Medline42. Sau, A, Sanyal, S, Bera, K, et al. DNA damage and apoptosis induction in cancer cells by chemically engineered thiolated riboflavin gold nanoassembly. ACS Appl Mater Inter. 2018;10(5):4582-4589. doi:10.1021/acsami.7b18837
Google Scholar | Crossref | Medline43. Bhanja, P, Mishra, S, Manna, K, Mallick, A, Saha, KD, Bhaumik, A. Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent. ACS Appl Mater Inter. 2017;9(37):31411-31423. doi:10.1021/acsami.7b07343
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif