Grading of clear cell renal cell carcinoma using diffusion MRI with a fractional order calculus model

1. Cheville, JC, Lohse, CM, Zincke, H, et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 2003;27:612–624.
Google Scholar | Crossref | Medline | ISI2. Crépel, M, Jeldres, C, Perrotte, P, et al. Nephron-sparing surgery is equally effective to radical nephrectomy for T1BN0M0 renal cell carcinoma: a population-based assessment. Urology 2010;75:271–275.
Google Scholar | Crossref | Medline3. Chen, DYT, Uzzo, RG. Optimal management of localized renal cell carcinoma: surgery, ablation, or active surveillance. J Natl Compr Canc Netw 2009;7:635–643.
Google Scholar | Crossref | Medline | ISI4. Tsui, KH, Shvarts, O, Smith, RB, et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urology 2000;163:1090–1095.
Google Scholar | Crossref | Medline | ISI5. Moch, H, Cubilla A, L, Humphrey P, A, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur Urol 2016;70:93–105.
Google Scholar | Crossref | Medline | ISI6. Chen, L, Liu, M, Bao, J, et al. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One 2013;8:e79008.
Google Scholar | Crossref | Medline | ISI7. Surov, A, Meyer, HJ, Wienke, A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 2017;8:59492–59499.
Google Scholar | Crossref | Medline8. Rosenkrantz, AB, Niver, BE, Fitzgerald, EF, et al. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 2010;195:W344–W351.
Google Scholar | Crossref | Medline | ISI9. Goyal, A, Sharma, R, Bhalla, AS, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 2012;53:349–358.
Google Scholar | SAGE Journals | ISI10. Villavicencio, CP, Mc Carthy, RJ, Miller, FH. Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors. Abdom Radiol 2017;42:1241–1249.
Google Scholar | Crossref | Medline11. Mytsyk, Y, Dutka, I, Borys, Y, et al. Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Int Urol Nephrol 2017;49:215–224.
Google Scholar | Crossref | Medline12. Feng, Q, Fang, W, Sun, XP, et al. Renal clear cell carcinoma: diffusion tensor imaging diagnostic accuracy and correlations with clinical and histopathological factors. Clin Radiol 2017;72:560–564.
Google Scholar | Crossref | Medline13. Yu, X, Lin, M, Ouyang, H, et al. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0 T diffusion-weighted MRI. Eur J Radiol 2012;81:3061–3066.
Google Scholar | Crossref | Medline | ISI14. Woo, S, Suh, CH, Kim, SY, et al. Diagnostic performance of DWI for differentiating high-from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol 2017;209:W374–W381.
Google Scholar | Crossref | Medline15. Lai, V, Lee, VHF, Lam, KO, et al. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model. Eur Radiol 2015;25:1708–1713.
Google Scholar | Crossref | Medline16. Zhang, JL, Sigmund, EE, Chandarana, H, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254:783–792.
Google Scholar | Crossref | Medline | ISI17. Le Bihan, D, Breton, E, Lallemand, D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–407.
Google Scholar | Crossref | Medline | ISI18. Chen, W, Sun, H, Zhang, X, et al. Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 2010;59:1754–1758.
Google Scholar | Crossref | ISI19. Sui, Y, Xiong, Y, Jiang, J, et al. Differentiation of low-and high-grade gliomas using high b-value diffusion imaging with a non-Gaussian diffusion model. AJNR Am J Neuroradiol 2016;37:1643–1649.
Google Scholar | Crossref | Medline20. Sui, Y, Wang, H, Liu, G, et al. Differentiation of low-and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 2015;277:489–496.
Google Scholar | Crossref | Medline21. Chen, W, Zhu, LN, Dai, YM, et al. Differentiation of salivary gland tumor using diffusion-weighted imaging with a fractional order calculus model. Br J Radiol 2020;93:20200052.
Google Scholar | Crossref | Medline22. Bickelhaupt, S, Steudle, F, Paech, D, et al. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography. PLoS One 2017;12:e0176077.
Google Scholar | Crossref | Medline23. Tang, L, Sui, Y, Zhong, Z, et al. Non–Gaussian diffusion imaging with a fractional order calculus model to predict response of gastrointestinal stromal tumor to second–line sunitinib therapy. Magn Reson Med 2018;79:1399–1406.
Google Scholar | Crossref | Medline24. Geng, Z, Zhang, Y, Yin, S, et al. Preoperatively grading rectal cancer with the combination of intravoxel incoherent motions imaging and diffusion kurtosis imaging. Contrast Media Mol Imaging 2020;2020:2164509.
Google Scholar | Crossref | Medline25. Shu, J, Wen, D, Xi, Y, et al. Clear cell renal cell carcinoma: machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Eur J Radiol 2019;121:108738.
Google Scholar | Crossref | Medline26. Bartko, JJ . The intraclass correlation coefficient as a measure of reliability. Psychol Rep 1966;19:3–11.
Google Scholar | SAGE Journals | ISI27. DeLong, ER, DeLong, DM, Clarke-Pearson, DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–845.
Google Scholar | Crossref | Medline | ISI28. Ye, J, Xu, Q, Wang, SA, et al. Quantitative evaluation of intravoxel incoherent motion and diffusion kurtosis imaging in assessment of pathological grade of clear cell renal cell carcinoma. Acad Radiol 2020;27:e176–e182.
Google Scholar | Crossref | Medline29. Zhu, Q, Ye, J, Zhu, W, et al. Value of intravoxel incoherent motion in assessment of pathological grade of clear cell renal cell carcinoma. Acta Radiol 2018;59:121–127.
Google Scholar | SAGE Journals | ISI30. Fuhrman, SA, Lasky, LC, Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 1982;6:655–664.
Google Scholar | Crossref | Medline | ISI31. Qian, CN, Huang, D, Wondergem, B, et al. Complexity of tumor vasculature in clear cell renal cell carcinoma. Cancer 2009;115:2282–2289.
Google Scholar | Crossref | Medline | ISI32. Magin, RL, Abdullah, O, Baleanu, D, et al. Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magn Reson 2008;190:255–270.
Google Scholar | Crossref | Medline | ISI33. Zhang, J, Suo, S, Liu, G, et al. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses. Korean J Radiol 2019;20:791–800.
Google Scholar | Crossref | Medline34. Shen, L, Zhou, L, Liu, X, et al. Comparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinoma. Diagn Interv Radiol 2017;23:100.
Google Scholar | Crossref | Medline35. Andreou, A, Koh, DM, Collins, DJ, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013;23:428–434.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif