1. Devlin, HB, Goldman, M. Backache due to osteoporosis in an industrial population. Ir J Med Sci 1966;6:141–148.
Google Scholar |
Crossref |
Medline2. Conference, CD . Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993;94:646–650.
Google Scholar |
Crossref |
Medline3. No authors listed . NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000; highlights of the conference. South Med J 2001;94:569–573.
Google Scholar |
Medline4. Hofbauer, LC, Rachner, TD. More DATA to guide sequential osteoporosis therapy. Lancet 2015;386:1116–1118.
Google Scholar |
Crossref |
Medline5. Paola, P, Daniela R, M, Francesco, C, et al. Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 2016;7:171.
Google Scholar |
Crossref |
Medline6. Cyrus, C, Atkinson, EJ, Jacobsen, SJ, et al. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993;137:1001–1005.
Google Scholar |
Crossref |
Medline7. Ott, SM . Methods of determining bone mass. J Bone Miner Res 1991;6:S71–S76.
Google Scholar |
Crossref |
Medline8. Link, TM . Osteoporosis imaging: state of the art and advanced imaging. Radiology 2012;263:3–17.
Google Scholar |
Crossref |
Medline |
ISI9. Kanis, JA . Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002;359:1929–1936.
Google Scholar |
Crossref |
Medline |
ISI10. Genant, HK, Cann, CE, Ettinger, B, et al. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982;97:699–705.
Google Scholar |
Crossref |
Medline |
ISI11. Valentinitsch, A, Trebeschi, S, Kaesmacher, J, et al. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 2019;30:1275–1285.
Google Scholar |
Crossref |
Medline12. Bi, WL, Hosny, A, Schabath, MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 2019;69:127–157.
Google Scholar |
Medline13. He, L, Liu, Z, Liu, C, et al. Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis. Acad Radiol 2020;28:e165–e171.
Google Scholar |
Crossref |
Medline14. Rastegar, S, Vaziri, M, Qasempour, Y, et al. Radiomics for classification of bone mineral loss: a machine learning study. Diagn Interv Imag 2020;101:12.
Google Scholar15. Mookiah, MRK, Subburaj, K, Mei, K, et al. Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure. J Comput Assist Tomogr 2018;42:441–447.
Google Scholar |
Crossref |
Medline16. Burian, E, Subburaj, K, Mookiah, MRK, et al. Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: a feasibility study. Osteoporos Int 2019;30:1265–1274.
Google Scholar |
Crossref |
Medline17. Elkomy, G, Sallam, E, Elgokhy, S. A stacked generalization method for disease progression prediction. 13th International Computer Engineering Conference (ICENCO) 2017;106–111.
Google Scholar18. Mohammed, M, Mwambi, H, Omolo, B, et al. Using stacking ensemble for microarray-based cancer classification. International Conference on Computer, Control, Electrical, and Electronics Engineering 2018;1–8.
Google Scholar19. Hida, K, Iwasaki, Y, Koyanagi, I, et al. Bone window computed tomography for detection of dural defect associated with cervical ossified posterior longitudinal ligament. Neurol Med Chir 1997;37:173–176.
Google Scholar |
Crossref |
Medline20. Mao, B, Zhang, L, Ning, P, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning–based radiomics. Eur Radiol 2020;30:6924–6932.
Google Scholar |
Crossref |
Medline21. Chalkidou, A, O’Doherty, MJ, Marsden, PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 2015;10:e0124165.
Google Scholar |
Crossref |
Medline |
ISI22. Cui, Y, Yang, X, Shi, Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 2019;29:1211–1220.
Google Scholar |
Crossref |
Medline23. Chee, CG, Min, AY, Kim, KW, et al. Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT. Eur Radiol 2021;29:6825–6834.
Google Scholar |
Crossref24. Chianca, V, Cuocolo, R, Gitto, S, et al. Radiomic machine learning classifiers in spine bone tumors: a multi-software, multi-scanner study. Eur J Radiol 2021;137:109586.
Google Scholar |
Crossref |
Medline
留言 (0)