1. Xi, Y, Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncol 2021; 14(10): 101174.
Google Scholar |
Crossref |
Medline2. Wong, MC, Ding, H, Wang, J, et al. Prevalence and risk factors of colorectal cancer in Asia. Intestinal Res 2019; 17(3): 317–329.
Google Scholar |
Crossref |
Medline3. Ahmadi, A, Shadboorestan, A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 2016; 68: 29–39.
Google Scholar |
Crossref |
Medline4. Roncucci, L, Stamp, D, Medline, A, et al. Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum Pathol 1991; 22(3): 287–294.
Google Scholar |
Crossref |
Medline5. Pretlow, TP, Barrow, BJ, Ashton, WS, et al. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Research 1991; 51(5): 1564–1567.
Google Scholar |
Medline6. Takayama, T, Katsuki, S, Takahashi, Y, et al. Aberrant crypt foci of the colon as precursors of adenoma and cancer. New Engl J Med 1998; 339(18): 1277–1284.
Google Scholar |
Crossref |
Medline |
ISI7. Orlando, FA, Tan, D, Baltodano, JD, et al. Aberrant crypt foci as precursors in colorectal cancer progression. J Surg Oncol 2008; 98(3): 207–213.
Google Scholar |
Crossref |
Medline8. Hensel, A, Maas, M, Sendker, J, et al. Eupatorium perfoliatum L.: phytochemistry, traditional use and current applications. J Ethnopharmacology 2011; 138(3): 641–651.
Google Scholar |
Crossref |
Medline9. Miura, K, Kikuzaki, H, Nakatani, N. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J Agric Food Chem 2002; 50(7): 1845–1851.
Google Scholar |
Crossref |
Medline10. Zhang, H, Chen, M-K, Li, K, et al. Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. Biomed Pharmacother 2017; 85: 704–711.
Google Scholar |
Crossref |
Medline11. Maas, M, Deters, AM, Hensel, A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J Ethnopharmacology 2011; 137(1): 371–381.
Google Scholar |
Crossref |
Medline12. Liu, K, Park, C, Chen, H, et al. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling. Mol Carcinogenesis 2015; 54(9): 751–760.
Google Scholar |
Crossref |
Medline13. Chung, K-S, Choi, J-H, Back, N-I, et al. Eupafolin, a flavonoid isolated fromArtemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol Nutr Food Res 2010; 54(9): 1318–1328.
Google Scholar |
Crossref |
Medline14. Herrerias, T, de Oliveira, BH, Gomes, MAB, et al. Eupafolin: effect on mitochondrial energetic metabolism. Bioorg Med Chem 2008; 16(2): 854–861.
Google Scholar |
Crossref |
Medline15. Fan, X, Tao, J, Cai, X, et al. Eupafolin suppresses esophagus cancer growth by targeting T-LAK cell-originated protein kinase. Front Pharmacol 2019; 10: 1248.
Google Scholar |
Crossref |
Medline16. Jiang, H, Wu, D, Xu, D, et al. Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. Int J Biol Sci 2017; 13(6): 701–711.
Google Scholar |
Crossref |
Medline17. Gao, Y, Zhang, Y, Fan, Y. Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway. Iranian Journal Basic Medical Sciences 2019; 22(11): 1340–1346.
Google Scholar |
Medline18. Hemann, MT, Lowe, SW. The p53-Bcl-2 connection. Cell Death Differ 2006; 13(8): 1256–1259.
Google Scholar |
Crossref |
Medline19. Youssef, KM, Ezzo, AM, El-Sayed, MI, et al. Chemopreventive effects of curcumin analogs in DMH-induced colon cancer in albino rats model. Future J Pharm Sci 2015; 1: 57–72.
Google Scholar |
Crossref20. Daaboul, HE, Daher, CF, Bodman-Smith, K, et al. Antitumor activity of β-2-himachalen-6-ol in colon cancer is mediated through its inhibition of the PI3K and MAPK pathways. Chemico-Biological Interactions 2017; 275: 162–170.
Google Scholar |
Crossref |
Medline21. Karthik Kumar, V, Vennila, S, Nalini, N. Modifying effects of morin on the development of aberrant crypt foci and bacterial enzymes in experimental colon cancer. Food Chem Toxicol 2009; 47(2): 309–315.
Google Scholar |
Crossref |
Medline22. Roy, S, Sil, A, Chakraborty, T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol 2019; 234(4): 4888–4909.
Google Scholar |
Crossref |
Medline23. Wang, J-G, Wang, DF, Lv, BJ, et al. A novel mouse model for colitis-associated colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sulfate sodium. World J Gastroenterol 2004; 10(20): 2958–2962.
Google Scholar |
Crossref |
Medline24. Roy, S, Das, R, Ghosh, B, et al. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinogenesis 2018; 57(6): 700–721.
Google Scholar |
Crossref |
Medline25. Bird, RP . Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 1987; 37(2): 147–151.
Google Scholar |
Crossref |
Medline |
ISI26. Bird, RP, Good, CK. The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett 2000; 112–113: 395–402.
Google Scholar |
Crossref |
Medline27. Fischer, AH, Jacobson, KA, Rose, J, et al. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 2008; 2008: db.prot4986.
Google Scholar |
Crossref28. Moreno, I, Pichardo, S, Jos, A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 2005; 45(4): 395–402.
Google Scholar |
Crossref |
Medline29. Kakkar, P, Das, B, Viswanathan, PN. A modified spectrophotometric assay of superoxide dismutase. Indian Journal Biochemistry Biophysics 1984; 21(2): 130–132.
Google Scholar |
Medline |
ISI30. Narendhirakannan, RT, Subramanian, S, Kandaswamy, M. Free radical scavenging activity of Cleome gynandra L. leaves on adjuvant induced arthritis in rats. Mol Cellular Biochemistry 2005; 276(1–2): 71–80.
Google Scholar |
Crossref |
Medline31. Seyyedi, MA, Farahnak, A, Jalali, M, et al. Study on glutathione S-transferase (GST) inhibition assay by triclabendazoleprotoscoleces (hydatid cyst; Echinococcusgranulosus) and sheep liver tissue. Iran J Public Health 2005; 34: 38–46.
Google Scholar32. Goldwasser, F, Bae, I, Valenti, M, et al. Topoisomerase I-related parameters and camptothecin activity in the colon carcinoma cell lines from the National Cancer Institute anticancer screen. Cancer Research 1995; 55(10): 2116–2121.
Google Scholar |
Medline33. Su, CC, Lin, JG, Li, TM, et al. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Research 2006; 26(6B): 4379–4389.
Google Scholar |
Medline |
ISI34. Gonzalez-Pons, M, Cruz-Correa, M. Colorectal Cancer Biomarkers: Where Are We Now?. BioMed Research International 2015; 2015: 149014.
Google Scholar |
Crossref |
Medline35. Lai, ZR, Ho, YL, Huang, SC, et al. Antioxidant, anti-inflammatory and antiproliferative activities of Kalanchoe gracilis (L.) DC stem. The Am Journal Chin Medicine 2011; 39(6): 1275–1290.
Google Scholar |
Crossref |
Medline36. Chung, K-S, Choi, J-H, Back, N-I, et al. Eupafolin, a flavonoid isolated fromArtemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol Nutr Food Res 2010; 54(9): 1318–1328.
Google Scholar |
Crossref |
Medline37. Jiang, H, Wu, D, Xu, D, et al. Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. Int J Biol Sci 2017; 13(6): 701–711.
Google Scholar |
Crossref |
Medline38. Han, MA, Min, K-J, Woo, SM, et al. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells. Oncotarget 2016; 7(40): 65707–65720.
Google Scholar |
Crossref |
Medline39. Hajrezaie, M, Hassandarvish, P, Moghadamtousi, SZ, et al. Chemopreventive evaluation of a Schiff base derived copper (II) complex against azoxymethane-induced colorectal cancer in rats. PLoS One 2014; 9(3): e91246.
Google Scholar |
Crossref |
Medline40. Garber, J, Barbee, R, Bielitzki, J. Guide for the care and use of laboratory animals. Washington DC: National Academic Press, 2010.
Google Scholar41. Kucharczak, J, Simmons, MJ, Fan, Y, et al. To be, or not to be: NF-κB is the answer - role of Rel/NF-κB in the regulation of apoptosis. Oncogene 2003; 22(56): 8961–8982.
Google Scholar |
Crossref |
Medline42. Karin, M, Greten, FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5(10): 749–759.
Google Scholar |
Crossref |
Medline43. Guo, C, Gasparian, AV, Zhuang, Z, et al. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 2009; 28(8): 1151–1161.
Google Scholar |
Crossref |
Medline44. Zhao, P, Zhang, Z. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol Letters 2018; 15(3): 3820–3827.
Google Scholar |
Medline45. Balkwill, F . Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9(5): 361–371.
Google Scholar |
Crossref |
Medline |
ISI46. Wang, X, Lin, Y. Tumor necrosis factor and cancer, buddies or foes?. Acta Pharmacologica Sinica 2008; 29(11): 1275–1288.
Google Scholar |
Crossref |
Medline47. Kalliolias, GD, Ivashkiv, LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016; 12(1): 49–62.
Google Scholar |
Crossref |
Medline48. Sasi, SP, Yan, X, Enderling, H, et al. Breaking the 'harmony' of TNF-α signaling for cancer treatment. Oncogene 2012; 31(37): 4117–4127.
Google Scholar |
Crossref |
Medline49. Mauer, J, Denson, JL, Brüning, JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 2015; 36(2): 92–101.
Google Scholar |
Crossref |
Medline50. Lippitz, BE, Harris, RA. Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis. Oncoimmunology 2016; 5(5): e1093722.
Google Scholar |
Crossref |
Medline51. Levine, AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3): 323–331.
Google Scholar |
留言 (0)