1. Hausenloy, DJ, Yellon, DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 2013; 123(1): 92–100.
Google Scholar |
Crossref |
Medline |
ISI2. Rajendran, K, Devarajan, N, Ganesan, M, et al. Obesity, inflammation and acute myocardial infarction - expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population. Thromb J 2012; 10(1): 13–16.
Google Scholar |
Crossref |
Medline3. Thakker, GD, Frangogiannis, NG, Bujak, M, et al. Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiology-Heart Circulatory Physiol 2006; 291(5): H2504–H2514.
Google Scholar |
Crossref |
Medline4. Khodeer, DM, Bilasy, SE, Farag, NE, et al. Sitagliptin protects diabetic rats with acute myocardial infarction through induction of angiogenesis: role of IGF-1 and VEGF. Can J Physiol Pharmacol 2019; 97(11): 1053–1063.
Google Scholar |
Crossref |
Medline5. Chao, J, Yin, H, Yao, Y-Y, et al. Novel role of Kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther 2006; 17(12): 1201–1213.
Google Scholar |
Crossref |
Medline6. Guo, J, Wang, S-B, Yuan, T-Y, et al. Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation. Atherosclerosis 2013; 231(2): 384–391.
Google Scholar |
Crossref |
Medline7. Liu, X, Shen, J, Jin, Y, et al. Recombinant human erythropoietin (rhEPO) preconditioning on nuclear factor-kappa B (NF-kB) activation & proinflammatory cytokines induced by myocardial ischaemia-reperfusion. Indian J Med Res 2006; 124(3): 343–354.
Google Scholar |
Medline8. Oyama, J-i, Blais, C, Liu, X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 2004; 109(6): 784–789.
Google Scholar |
Crossref |
Medline9. Zhang, T, Sun, L, Liu, R, et al. A novel naturally occurring salicylic acid analogue acts as an anti-inflammatory agent by inhibiting nuclear factor-kappaB activity in RAW264.7 macrophages. Mol Pharmaceutics 2012; 9(3): 671–677.
Google Scholar |
Crossref |
Medline10. Patel, R, Pramanik, S, Rathwa, NN, et al 112-LB: Melatonin and DPP-IV Inhibitor: A Novel Combinatorial Approach for ß-Cell Regeneration. Arlington, VA: American Diabetes Association, 2019.
Google Scholar |
Crossref11. Chang, G, Zhang, P, Ye, L, et al Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model. Eur J Pharmacol 2013; 718(1–3): 105–113.
Google Scholar |
Crossref |
Medline12. Chang, M-w, Chen, C-h, Chen, Y-c, et al. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors. Acta Pharmacologica Sinica 2015; 36(1): 119–130.
Google Scholar |
Crossref |
Medline13. Vaghasiya, J, Sheth, N, Bhalodia, Y, et al. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul Peptides 2011; 166(1–3): 48–54.
Google Scholar |
Crossref |
Medline14. Nuransoy, A, Beytur, A, Polat, A, et al. Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Ren Fail 2015; 37(4): 687–693.
Google Scholar |
Crossref |
Medline15. El-Sahar, AE, Safar, MM, Zaki, HF, et al. Sitagliptin attenuates transient cerebral ischemia/reperfusion injury in diabetic rats: implication of the oxidative-inflammatory-apoptotic pathway. Life Sci 2015; 126: 81–86.
Google Scholar |
Crossref |
Medline |
ISI16. Khedr, RM, Ahmed, AAE, Kamel, R, et al. Sitagliptin attenuates intestinal ischemia/reperfusion injury via cAMP/PKA, PI3K/Akt pathway in a glucagon-like peptide 1 receptor-dependent manner. Life Sci 2018; 211: 31–39.
Google Scholar |
Crossref |
Medline17. Dominguez-Rodriguez, A, Abreu-Gonzalez, P. Myocardial ischemia-reperfusion injury: possible role of melatonin. World J Cardiol 2010; 2(8): 233.
Google Scholar |
Crossref |
Medline18. Sahna, E, Acet, A, Kaya Ozer, M, et al. Myocardial ischemia-reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. J Pineal Res 2002; 33(4): 234–238.
Google Scholar |
Crossref |
Medline19. Chen, WR, Liu, HB, Chen, YD, et al. Melatonin attenuates myocardial ischemia/reperfusion injury by inhibiting autophagy via an AMPK/mTOR signaling pathway. Cell Physiol Biochem 2018; 47(5): 2067–2076.
Google Scholar |
Crossref |
Medline20. Lee, Y-M, Chen, H-R, Hsiao, G, et al. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. J Pineal Res 2002; 33(2): 72–80.
Google Scholar |
Crossref |
Medline21. Imenshahidi, M, Karimi, G, Hosseinzadeh, H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn-Schmiedeberg's Arch Pharmacol 2020; 393(4): 521–536.
Google Scholar |
Crossref |
Medline22. Davidson, SM, Ferdinandy, P, Andreadou, I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2019; 73(1): 89–99.
Google Scholar |
Crossref |
Medline23. Petrosillo, G, Colantuono, G, Moro, N, et al. Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiology-Heart Circulatory Physiol 2009; 297(4): H1487–H1493.
Google Scholar |
Crossref |
Medline24. Yang, Y, Duan, W, Jin, Z, et al. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 2013; 55(3): 275–286.
Google Scholar |
Crossref |
Medline25. Zhai, M, Li, B, Duan, W, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 2017; 63(2): e12419.
Google Scholar |
Crossref26. Bozkurt, B, Aguilar, D, Deswal, A, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation 2016; 134(23): e535–e578.
Google Scholar |
Crossref |
Medline27. Song, T, Lv, L-Y, Xu, J, et al. Diet-induced obesity suppresses sevoflurane preconditioning against myocardial ischemia-reperfusion injury: role of AMP-activated protein kinase pathway. Exp Biol Med 2011; 236(12): 1427–1436.
Google Scholar |
SAGE Journals |
ISI28. Maarman, G, Marais, E, Lochner, A, et al. Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity. Cardiovasc Drugs Ther 2012; 26(3): 205–216.
Google Scholar |
Crossref |
Medline |
ISI29. Liu, J, Lloyd, SG. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr Res 2013; 33(4): 311–321.
Google Scholar |
Crossref |
Medline30. Chen, H, Zhang, R-Q, Wei, X-G, et al. Mechanism of TLR-4/NF-κB pathway in myocardial ischemia reperfusion injury of mouse. Asian Pac J Trop Med 2016; 9(5): 503–507.
Google Scholar |
Crossref |
Medline |
ISI31. Hernandez-Resendiz, S, Chinda, K, Ong, S-B, et al. The role of redox dysregulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury - adding fuel to the fire. Curr Med Chem 2018; 25(11): 1275–1293.
Google Scholar |
Crossref |
Medline32. Vilahur, G, Badimon, L. Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor. Front Physiol 2014; 5: 496.
Google Scholar |
Crossref |
Medline |
ISI33. Kleinbongard, P, Schulz, R, Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16(1): 49–69.
Google Scholar |
Crossref |
Medline |
ISI34. Cha, J, Wang, Z, Ao, L, et al. Cytokines link toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 2008; 85(5): 1678–1685.
Google Scholar |
Crossref |
Medline35. Saini, HK, Xu, YJ, Zhang, M, et al. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 2005; 10(4): 213–222.
Google Scholar |
Medline
留言 (0)