Evaluation of Effect of Biologically Synthesized Ethanolic Extract of Propolis-Loaded Poly(-Lactic-co-Glycolic Acid) Nanoparticles on Wound Healing in Diabetic Rats

1. American Diabetes Association . Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37 Suppl 1(Supplement_1):S81‐S90.
Google Scholar | Crossref | Medline2. Komesu, MC, Tanga, MB, Buttros, KR, et al. Effects of acute diabetes on rat cutaneous wound healing. Pathophysiology. 2004;11:(2)63‐67.
Google Scholar | Crossref | Medline3. Gosain, A, DiPietro, LA. Aging and wound healing. World J Surg. 2004;28(3):321‐326.
Google Scholar | Crossref | Medline | ISI4. Mathieu, D, Linke, J-C, Wattel, F. Non-Healing wounds. In: Handbook on Hyperbaric Medicine. Springer-Verlag; 2006:401‐428.
Google Scholar | Crossref5. Guo, S, Dipietro, LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219‐229.
Google Scholar | SAGE Journals | ISI6. Dumville, JC, Lipsky, BA, Hoey, C, et al. Topical antimicrobial agents for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev. 2017;6(6):CD011038.
Google Scholar | Medline7. El-Guendouz, S, Al-Waili, N, Aazza, S, et al. Antioxidant and diuretic activity of co-administration of capparis spinosa honey and propolis in comparison to furosemide. Asian Pac J Trop Med. 2017;10(10):974‐980.
Google Scholar | Crossref | Medline8. Park, SG, Lee, DY, Seo, SK, et al. Evaluation of anti-allergic properties of caffeic acid phenethyl ester in a murine model of systemic anaphylaxis. Toxicol Appl Pharmacol. 2008;226(1):22‐29.
Google Scholar | Crossref | Medline9. Sforcin, JM . Biological properties and therapeutic applications of propolis. Phytother Res. 2016;30(6):894‐905.
Google Scholar | Crossref | Medline10. Barbosa, RA, Nunes, TL, Nunes, TL, et al. Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats. Pharm Biol. 2016;54(6):993‐1004.
Google Scholar | Crossref | Medline11. Chen, CC, Kuo, CY, Chen, RF. Role of CAPE on cardiomyocyte protection via connexin 43 regulation under hypoxia. Int J Med Sci. 2016;13(10):754‐758.
Google Scholar | Crossref | Medline12. Kabała-Dzik, A, Rzepecka-Stojko, A, Kubina, R, et al. Migration rate inhibition of breast cancer cells treated by caffeic acid and caffeic acid phenethyl ester: an In vitro comparison study. Nutrients. 2017;9(10):1144.
Google Scholar | Crossref | Medline13. Nie, J, Chang, Y, Li, Y, et al. Caffeic acid phenethyl ester (propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 cell models. J Agric Food Chem. 2017;65(41):9041‐9053.
Google Scholar | Crossref | Medline14. Kubiliene, L, Laugaliene, V, Pavilonis, A, et al. Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complement Altern Med. 2015;15:156.
Google Scholar | Crossref | Medline15. Bamrungsap, S, Zhao, Z, Chen, T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond). 2012;7(8):1253‐1271.
Google Scholar | Crossref | Medline16. Jiang, L, Greene, MK, Insua, JL, et al. Clearance of intracellular klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Control Release. 2018;279:316‐325.
Google Scholar | Crossref | Medline17. Kesavan, MP, Kotla, NG, Ayyanaar, S, et al. A theranostic nanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine. 2018;14(5):1643‐1654.
Google Scholar | Crossref | Medline18. Jose, J, Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol. 2019;18(1):315‐321.
Google Scholar | Crossref | Medline19. Bonifácio, BV, Silva, PB, Ramos, MA, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1‐15.
Google Scholar | Medline20. Kapoor, DN, Bhatia, A, Kaur, R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41‐58.
Google Scholar | Crossref | Medline21. El-Say, KM, El-Sawy, HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1-2):675‐691.
Google Scholar | Crossref | Medline22. Hickey, JW, Santos, JL, Williford, JM, et al. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015;219:536‐547.
Google Scholar | Crossref | Medline23. Kumari, A, Yadav, SK, Yadav, SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1‐18.
Google Scholar | Crossref | Medline | ISI24. Danhier, F, Ansorena, E, Silva, JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505‐522.
Google Scholar | Crossref | Medline | ISI25. Derman, S . Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J Nanomaterials. 2015;2015(1):341848.
Google Scholar | Crossref26. Menéndez-Manjón, A, Wagener, P, Barcikowski, S. Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J Phys Chem C. 2011;115(12):5108‐5114.
Google Scholar | Crossref27. Taghavifar, S, Afroughi, F, Saadati Keyvan, M. Curcumin nanoparticles improved diabetic wounds infected with methicillin-resistant staphylococcus aureus sensitized with HAMLET [published online ahead of print, 2020 Jun 28]. Int J Low Extrem Wounds. 2020;1534734620933079.
Google Scholar28. Martin, J, Zenilman, M, Lazarus, GS. Molecular microbiology: new dimensions for cutaneous biology and wound healing. J Invest Dermatol. 2010;130(1):38‐48.
Google Scholar | Crossref | Medline | ISI29. McLaughlin, S, Podrebarac, J, Ruel, M, et al. Nano-engineered biomaterials for tissue regeneration: what has been achieved so far? Front Mater. 2016;3(27).
Google Scholar | Medline30. Wang, EC, Wang, AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2016;6(1):9‐26.
Google Scholar | Crossref31. Aziz, Z . Abdul rasool hassan B. The effects of honey compared to silver sulfadiazine for the treatment of burns: a systematic review of randomized controlled trials. Burns. 2017;43(1):50‐57.
Google Scholar | Crossref | Medline32. Tan, JQ, Zhang, HH, Lei, ZJ, et al. The roles of autophagy and apoptosis in burn wound progression in rats. Burns. 2013;39:1551‐1556.
Google Scholar | Crossref | Medline33. Tang, C, Xiang, L, Su, J, et al. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B. 2008;112(13):3876‐3881.
Google Scholar | Crossref | Medline | ISI34. Gopal, A, Kant, V, Gopalakrishnan, A, Tandan, SK, Kumar, D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol. 2014;731:8‐19.
Google Scholar | Crossref | Medline35. desJardins-Park, HE, Foster, DS, Longaker, MT. Fibroblasts and wound healing: an update. Regen Med. 2018;13(5):491‐495.
Google Scholar | Crossref | Medline36. Diegelmann, RF, Evans, MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283‐289.
Google Scholar | Crossref | Medline | ISI37. Baum, CL, Arpey, CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674‐686.
Google Scholar | Crossref | Medline | ISI38. Chen, D, Hao, H, Fu, X, et al. Insight into reepithelialization: how Do mesenchymal stem cells perform? Stem Cells Int. 2016;2016:6120173.
Google Scholar | Crossref | Medline39. Kogan, S, Halsey, J, Agag, RL. Biologics in acute burn injury. Ann Plast Surg. 2019;83(1):26‐33.
Google Scholar | Crossref | Medline40. Salerian, AJ . Burn wound infections and pseudomonas aeruginosa. Burns. 2020;46(1):257‐258.
Google Scholar | Crossref | Medline41. Chen, X, Wang, WZ, Wang, Y, et al. Functionalization of silver/titanium dioxide composites in chitosan-based coatings and their Egg preservation performances. J Vis Exp. 2021;173, 10.3791/61850.
Google Scholar42. Umar, AK, Sriwidodo, S, Maksum, IP, et al. Film-Forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing. Molecules. 2021;26(17):5326.
Google Scholar | Crossref | Medline43. Riwaldt, S, Corydon, TJ, Pantalone, D, et al. Role of apoptosis in wound healing and apoptosis alterations in microgravity. Front Bioeng Biotechnol. 2021;9:679650.
Google Scholar | Crossref | Medline44. Bhan, S, Mitra, R, Arya, AK, et al. A study on evaluation of apoptosis and expression of bcl-2-related marker in wound healing of streptozotocin-induced diabetic rats. ISRN Dermatol. 2013;2013:739054.
Google Scholar | Crossref | Medline45. Behroozi-Lak, T, Ebrahimpour, M, Zarei, L, et al. Systemic administration of curcumin nanoparticles protects ischemia-reperfusion injury in ovaries: an animal model study. Rev Assoc Med Bras (1992). 2018;64(1):22‐31.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif