Sleep and circadian rhythms in Parkinson’s disease and preclinical models

1.

Herzog-Krzywoszanska R, Krzywoszanski L. Sleep Disorders in Huntington’s Disease. Front Psychiatry. 2019;10(221).

2.

Mattis J, Sehgal A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol Metab. 2016;27(4):192–203.

CAS  PubMed  PubMed Central  Google Scholar 

3.

Leng Y, et al. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18(3):307–18.

PubMed  PubMed Central  Google Scholar 

4.

Videnovic A. et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. 2014;71(4):463–9.

Google Scholar 

5.

Weissová K, et al. Moderate changes in the circadian system of Alzheimer's disease patients detected in their home environment. PLoS One. 2016;11(1):e0146200.

PubMed  PubMed Central  Google Scholar 

6.

Videnovic A, et al. 'The clocks that time us'—circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 2014;10(12):683.

7.

Stocchi F, Torti M. Adjuvant therapies for Parkinson's disease: critical evaluation of safinamide. Drug Des Devel Ther. 2016;10:609–18.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Reichmann H, et al. Effectiveness and safety of opicapone in Parkinson's disease patients with motor fluctuations: the OPTIPARK open-label study. Transl Neurodegener. 2020;9(1):9.

CAS  PubMed  PubMed Central  Google Scholar 

9.

Hickey P, Stacy M. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease. Front Neurosci. 2016;10:173.

PubMed  PubMed Central  Google Scholar 

10.

Boutet A, et al. Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning. Nat Commun. 2021;12(1):3043.

CAS  PubMed  PubMed Central  Google Scholar 

11.

Paff M, et al. Update on Current Technologies for Deep Brain Stimulation in Parkinson's Disease. J Mov Disord. 2020;13(3):185–98.

PubMed  PubMed Central  Google Scholar 

12.

Musiek ES, et al. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol. 2018;75(5):582–90.

PubMed  Google Scholar 

13.

Leng Y, et al. Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson's disease in older men. Int J Epidemiol. 2018;47(5):1679–86.

PubMed  PubMed Central  Google Scholar 

14.

Lazar AS, et al. Sleep deficits but no metabolic deficits in premanifest Huntington's disease. Ann Neurol. 2015;78(4):630–48.

PubMed  PubMed Central  Google Scholar 

15.

Hood S, Amir S. Neurodegeneration and the Circadian Clock. Front Aging Neurosci. 2017;9:170.

PubMed  PubMed Central  Google Scholar 

16.

Abbott SM, Videnovic A. Chronic sleep disturbance and neural injury: links to neurodegenerative disease. Nat Sci Sleep. 2016;8:55–61.

PubMed  PubMed Central  Google Scholar 

17.

Malhotra RK. Neurodegenerative Disorders and Sleep. Sleep Med Clin. 2018;13(1):63–70.

PubMed  Google Scholar 

18.

Ding H, et al. Decreased expression of Bmal2 in patients with Parkinson's disease. Neurosci Lett. 2011;499(3):186–8.

CAS  PubMed  Google Scholar 

19.

Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson's disease. Neurotox Res. 2007;11(3-4):151–67.

CAS  PubMed  Google Scholar 

20.

Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5(1):107–10.

CAS  PubMed  Google Scholar 

21.

Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia. 2017;32(8):533–9.

CAS  PubMed  Google Scholar 

22.

Roedter A, et al. Comparison of unilateral and bilateral intrastriatal 6-hydroxydopamine-induced axon terminal lesions: evidence for interhemispheric functional coupling of the two nigrostriatal pathways. J Comp Neurol. 2001;432(2):217–29.

CAS  PubMed  Google Scholar 

23.

Kirik D, Rosenblad C, Bjorklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol. 1998;152(2):259–77.

CAS  PubMed  Google Scholar 

24.

Ben V, Bruguerolle B. Effects of bilateral striatal 6-OHDA lesions on circadian rhythms in the rat: a radiotelemetric study. Life Sci. 2000;67(13):1549–58.

CAS  PubMed  Google Scholar 

25.

Slack K, et al. Subtle cardiovascular dysfunction in the unilateral 6-hydroxydopamine-lesioned rat. Parkinsons Dis. 2010;2010:427810.

CAS  PubMed  PubMed Central  Google Scholar 

26.

Ben V, Blin O, Bruguerolle B. Time-dependent striatal dopamine depletion after injection of 6-hydroxydopamine in the rat. Comparison of single bilateral and double bilateral lesions. J Pharm Pharmacol. 1999;51(12):1405–8.

CAS  PubMed  Google Scholar 

27.

Henderson JM, et al. Subthalamic nucleus lesions induce deficits as well as benefits in the hemiparkinsonian rat. Eur J Neurosci. 1999;11(8):2749–57.

CAS  PubMed  Google Scholar 

28.

Sakata M, et al. Mesolimbic dopaminergic system is involved in diurnal blood pressure regulation. Brain Res. 2002;928(1-2):194–201.

CAS  PubMed  Google Scholar 

29.

Sei H, et al. Injection of 6-hydroxydopamine into the ventral tegmental area suppresses the increase in arterial pressure during REM sleep in the rat. Sleep Res Online. 1999;2(1):1–6.

CAS  PubMed  Google Scholar 

30.

Ariza D, et al. Dysautonomias in Parkinson's disease: cardiovascular changes and autonomic modulation in conscious rats after infusion of bilateral 6-OHDA in substantia nigra. Am J Physiol Heart Circ Physiol. 2015;308(3):H250–7.

CAS  PubMed  Google Scholar 

31.

Sorensen GL, Mehlsen J, Jennum P. Reduced sympathetic activity in idiopathic rapid-eye-movement sleep behavior disorder and Parkinson's disease. Auton Neurosci. 2013;179(1-2):138–41.

PubMed  Google Scholar 

32.

Isobe Y, Nishino H. Circadian rhythm of drinking and running-wheel activity in rats with 6-hydroxydopamine lesions of the ventral tegmental area. Brain Res. 2001;899(1-2):187–92.

CAS  PubMed  Google Scholar 

33.

Gravotta L, et al. Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J Mol Neurosci. 2011;45(2):162–71.

CAS  PubMed  Google Scholar 

34.

Grieb B, et al. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease. Front Syst Neurosci. 2013;7:95.

PubMed  PubMed Central  Google Scholar 

35.

Masini D, et al. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl Psychiatry. 2017;7(4):e1088.

CAS  PubMed  PubMed Central  Google Scholar 

36.

Hood S, et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci. 2010;30(42):14046–58.

CAS  PubMed  PubMed Central  Google Scholar 

37.

Marini AM, et al. Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. J Neurochem. 1992;58(4):1250–8.

CAS  PubMed  Google Scholar 

38.

Javitch JA, et al. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985;82(7):2173–7.

CAS  PubMed  PubMed Central  Google Scholar 

39.

Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis. 2011;1(1):19–33.

CAS  PubMed  PubMed Central  Google Scholar 

40.

Petroske E, et al. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 2001;106(3):589–601.

CAS  PubMed  Google Scholar 

41.

Munoz-Manchado AB, et al. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice. J Neurochem. 2016;136(2):373–87.

CAS  PubMed  Google Scholar 

42.

Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007;2(1):141–51.

CAS  PubMed  Google Scholar 

43.

McCormack AL, et al. Pathologic modifications of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol. 2008;67(8):793–802.

PubMed  Google Scholar 

44.

Fifel K, Dkhissi-Benyahya O, Cooper HM. Lack of long-term changes in circadian, locomotor, and cognitive functions in acute and chronic MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse models of Parkinson's disease. Chronobiol Int. 2013;30(6):741–55.

CAS  PubMed  Google Scholar 

45.

Laloux C, et al. MPTP-treated mice: long-lasting loss of nigral TH-ir neurons but not paradoxical sleep alterations. Exp Brain Res. 2008;186(4):635–42.

PubMed  Google Scholar 

46.

Laloux C, et al. Effect of dopaminergic substances on sleep/wakefulness in saline- and MPTP-treated mice. J Sleep Res. 2008;17(1):101–10.

PubMed  Google Scholar 

47.

Tanaka M, et al. Effects of age-related dopaminergic neuron loss in the substantia nigra on the circadian rhythms of locomotor activity in mice. Neurosci Res. 2012;74(3-4):210–5.

CAS  PubMed 

留言 (0)

沒有登入
gif