Recent Advances in Bedside Device-Based Early Detection of Sepsis

1. Singer, M, Deutschman, CS, Seymour, CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0287
Google Scholar | Crossref | Medline | ISI2. Ramachandran, G . Gram-positive and gram-negative bacterial toxins in sepsis. Virulence. 2014;5(1):213-218. doi:10.4161/viru.27024
Google Scholar | Crossref | Medline3. Chousterman, BG, Swirski, FK, Weber, GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517-528. doi:10.1007/s00281-017-0639-8
Google Scholar | Crossref | Medline4. Mollnes, TE, Huber-Lang, M. Complement in sepsis—when science meets clinics. FEBS Lett. 2020;594(16):2621-2632. doi:10.1002/1873-3468.13881
Google Scholar | Crossref | Medline5. Georgescu, AM, Banescu, C, Azamfirei, R, et al. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression. BMC Infect Dis. 2020;20(1):221. doi:10.1186/s12879-020-4910-6
Google Scholar | Crossref | Medline6. Zhang, Y, Li, M, Bao, L, Hu, P. A case-control study on the relationship between miRNAs single nucleotide polymorphisms and sepsis risk. Medicine (Baltimore). 2019;98(33):e16744. doi:10.1097/MD.0000000000016744
Google Scholar | Crossref | Medline7. Mewes, C, Büttner, B, Hinz, J, et al. CTLA-4 genetic variants predict survival in patients with sepsis. J Clin Med. 2019;8(1):E70. doi:10.3390/jcm8010070
Google Scholar | Crossref | Medline8. Bermúdez-Mejía, C, Torres-Cordón, MF, Becerra-Bayona, S, et al. Prognostic value of MMP-9 -1562 C/T gene polymorphism in patients with sepsis. Biomark Insights. 2019;14: 1–7. doi:10.1177/1177271919847951
Google Scholar | SAGE Journals9. Simmons, J, Pittet, J-F. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol. 2015;28(2):227-236. doi:10.1097/ACO.0000000000000163
Google Scholar | Crossref | Medline10. Schmidt, EP, Yang, Y, Janssen, WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217-1223. doi:10.1038/nm.2843
Google Scholar | Crossref | Medline | ISI11. Piagnerelli, M, Boudjeltia, KZ, Vanhaeverbeek, M, Vincent, J-L. Red blood cell rheology in sepsis. Intensive Care Med. 2003;29(7):1052-1061. doi:10.1007/s00134-003-1783-2
Google Scholar | Crossref | Medline | ISI12. Torio, CM , Moore, BJ . National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Agency for Healthcare Research and Quality; 2006. Accessed October 4, 2020. http://www.ncbi.nlm.nih.gov/books/NBK368492/
Google Scholar13. Afshar, M, Arain, E, Ye, C, et al. Patient outcomes and cost-effectiveness of a sepsis care quality improvement program in a health system*. Crit Care Med. 2019;47(10):1371-1379. doi:10.1097/CCM.0000000000003919
Google Scholar | Crossref | Medline14. Kumar, A, Roberts, D, Wood, KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589-1596. doi:10.1097/01.CCM.0000217961.75225.E9
Google Scholar | Crossref | Medline | ISI15. Rhee, C, Wang, R, Zhang, Z, et al. Epidemiology of hospital-onset versus community-onset sepsis in U.S. Hospitals and Association with mortality: a retrospective analysis using electronic clinical data. Crit Care Med. 2019;47(9):1169-1176. doi:10.1097/CCM.0000000000003817
Google Scholar | Crossref | Medline16. Rhee, C, Dantes, R, Epstein, L, et al. Incidence and trends of sepsis in US hospitals using clinical versus claims data, 2009-2014. JAMA. 2017;318(13):1241-1249. doi:10.1001/jama.2017.13836
Google Scholar | Crossref | Medline17. Reese, J, Deakyne, SJ, Blanchard, A, Bajaj, L. Rate of preventable early unplanned intensive care unit transfer for direct admissions and emergency department admissions. Hosp Pediatr. 2015;5(1):27-34. doi:10.1542/hpeds.2013-0102
Google Scholar | Crossref | Medline18. van Galen, LS, Struik, PW, Driesen, BEJM, et al. Delayed recognition of deterioration of patients in general wards is mostly caused by human related monitoring failures: a root cause analysis of unplanned ICU admissions. PLoS One. 2016;11(8):e0161393. doi:10.1371/journal.pone.0161393
Google Scholar | Crossref | Medline19. Rhodes, A, Evans, LE, Alhazzani, W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304-377. doi:10.1007/s00134-017-4683-6
Google Scholar | Crossref | Medline20. Raith, EP, Udy, AA, Bailey, M, et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017;317(3):290-300. doi:10.1001/jama.2016.20328
Google Scholar | Crossref | Medline21. Hwang, MI, Bond, WF, Powell, ES. Sepsis alerts in emergency departments: a systematic review of accuracy and quality measure impact. West J Emerg Med. 2020;21(5):1201-1210. doi:10.5811/westjem.2020.5.46010
Google Scholar | Crossref | Medline22. Makam, AN, Nguyen, OK, Auerbach, AD. Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: a systematic review. J Hosp Med. 2015;10(6):396-402. doi:10.1002/jhm.2347
Google Scholar | Crossref | Medline23. Wacharasint, P, Nakada, T, Boyd, JH, Russell, JA, Walley, KR. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock (Augusta Ga). 2012;38(1):4-10. doi:10.1097/SHK.0b013e318254d41a
Google Scholar | Crossref | Medline24. Hernández, G, Ospina-Tascón, GA, Damiani, LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status versus serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654-664. doi:10.1001/jama.2019.0071
Google Scholar | Crossref | Medline25. Zampieri, FG, Damiani, LP, Bakker, J, et al. Effects of a resuscitation strategy targeting peripheral perfusion status versus serum lactate levels among patients with septic shock. A Bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med. 2019;201(4):423-429. doi:10.1164/rccm.201905-0968OC
Google Scholar | Crossref26. Lara, B, Enberg, L, Ortega, M, et al. Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality. PLoS One. 2017;12(11):e0188548. doi:10.1371/journal.pone.0188548
Google Scholar | Crossref | Medline27. Hernandez, G, Pedreros, C, Veas, E, et al. Evolution of peripheral versus metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care. 2012;27(3):283-288. doi:10.1016/j.jcrc.2011.05.024
Google Scholar | Crossref | Medline28. Sheridan, DC, Baker, SD, Kayser, SA, Jones, D, Hansen, ML. Variability of capillary refill time among physician measurements. J Emerg Med. 2017;53(5):e51-e57. doi:10.1016/j.jemermed.2017.06.035
Google Scholar | Crossref | Medline29. Sheridan, DC, Cloutier, R, Kibler, A, Hansen, ML. Cutting-edge technology for rapid bedside assessment of capillary refill time for early diagnosis and resuscitation of sepsis. Front Med. 2020;7:1–5. 10.3389/fmed.2020.612303
Google Scholar | Crossref30. Yasufumi, O, Morimura, N, Shirasawa, A, et al. Quantitative capillary refill time predicts sepsis in patients with suspected infection in the emergency department: an observational study. J Intensive Care. 2019;7:29. doi:10.1186/s40560-019-0382-4
Google Scholar | Crossref | Medline31. Shinozaki, K, Jacobson, LS, Saeki, K, et al. Comparison of point-of-care peripheral perfusion assessment using pulse oximetry sensor with manual capillary refill time: clinical pilot study in the emergency department. J Intensive Care. 2019;7:52. doi:10.1186/s40560-019-0406-0
Google Scholar | Crossref | Medline32. Oi, Y, Sato, K, Nogaki, A, et al. Association between venous blood lactate levels and differences in quantitative capillary refill time. Acute Med Surg. 2018;5(4):321-328. doi:10.1002/ams2.348
Google Scholar | Crossref | Medline33. Morimura, N, Takahashi, K, Doi, T, et al. A pilot study of quantitative capillary refill time to identify high blood lactate levels in critically ill patients. Emerg Med J. 2015;32(6):444-448. doi:10.1136/emermed-2013-203180
Google Scholar | Crossref | Medline34. Hu, C, Annese, VF, Velugotla, S, et al. Disposable paper-on-CMOS platform for real-time simultaneous detection of metabolites. IEEE Trans Biomed Eng. 2020;67(9):2417-2426. doi:10.1109/TBME.2019.2962239
Google Scholar | Crossref | Medline35. Budidha, K, Mamouei, M, Baishya, N, Qassem, M, Vadgama, P, Kyriacou, PA. Identification and quantitative determination of lactate using optical spectroscopy—towards a noninvasive tool for early recognition of sepsis. Sensors. 2020;20(18):5402. doi:10.3390/s20185402
Google Scholar | Crossref36. Berger, J, Valera, E, Jankelow, A, et al. Simultaneous electrical detection of IL-6 and PCT using a microfluidic biochip platform. Biomed Microdevices. 2020;22(2):36. doi:10.1007/s10544-020-00492-6
Google Scholar | Crossref | Medline37. Fabri-Faja, N, Calvo-Lozano, O, Dey, P, et al. Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Anal Chim Acta. 2019;1077:232-242. doi:10.1016/j.aca.2019.05.038
Google Scholar | Crossref | Medline38. Hassan, U, Ghonge, T, Reddy, B, et al. A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat Commun. 2017;8(1):15949. doi:10.1038/ncomms15949
Google Scholar | Crossref | Medline39. Alba-Patiño, A, Russell, SM, Borges, M, Pazos-Pérez, N, Álvarez-Puebla, RA, de la Rica, R. Nanoparticle-based mobile biosensors for the rapid detection of sepsis biomarkers in whole blood. Nanoscale Adv. 2020;2(3):1253-1260. doi:10.1039/D0NA00026D
Google Scholar | Crossref40. Min, J, Nothing, M, Coble, B, et al. Integrated biosensor for rapid and point-of-care sepsis diagnosis. ACS Nano. 2018;12(4):3378-3384. doi:10.1021/acsnano.7b08965
Google Scholar | Crossref | Medline41. Park, Y, Ryu, B, Deng, Q, et al. An integrated plasmo-photoelectronic nanostructure biosensor detects an infection biomarker accompanying cell death in neutrophils. Small Weinh Bergstr Ger. 2020;16(1):e1905611. doi:10.1002/smll.201905611
Google Scholar | Crossref | Medline42. Faix, JD . Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013;50(1):23-36. doi:10.3109/10408363.2013.764490
Google Scholar | Crossref | Medline | ISI43. Khan, A, Ali, Z. Normal ranges for acute phase reactants (interleukin-6, tumour necrosis factor-alpha and C-reactive protein) in umbilical cord blood of healthy term neonates at the Mount Hope Women’s Hospital, Trinidad. West Indian Med J. 2014;63(5):465-469. doi:10.7727/wimj.2012.133
Google Scholar | Crossref | Medline44. Mitchell, PS, Parkin, RK, Kroh, EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):

留言 (0)

沒有登入
gif