Advances and challenges in the treatment of myasthenia gravis

1. Mantegazza, R, Antozzi, C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Adv Neurol Disord. Epub ahead of print 18 January 2018. DOI: 10.1177/1756285617749134.
Google Scholar | Crossref2. Schneider-Gold, C, Hagenacker, T, Melzer, N, et al Understanding the burden of refractory myasthenia gravis. Ther Adv Neurol Disord. Epub ahead of print 1 March 2019. DOI: 10.1177/1756286419832242.
Google Scholar | Crossref3. Howard, JF, Utsugisawa, K, Benatar, M, et al Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol 2017; 16: 976–986.
Google Scholar | Crossref | Medline | ISI4. Li, T, Zhang, GQ, Li, Y, et al Efficacy and safety of different dosages of rituximab for refractory generalized AChR myasthenia gravis: a meta-analysis. J Clin Neurosci 2021; 85: 6–12.
Google Scholar | Crossref | Medline5. Melzer, N, Ruck, T, Fuhr, P, et al Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol 2016; 263: 1473–1494.
Google Scholar | Crossref | Medline | ISI6. Menon, D, Barnett, C, Bril, V. Novel treatments in myasthenia gravis. Front Neurol 2020; 11: 538. DOI: 10.3389/fneur.2020.00538.
Google Scholar | Crossref | Medline7. Koneczny, I, Herbst, R. Myashenia gravis: pathogenic effects of autoantibodies on neuromuscular architecture. Cells 2019; 8: 671. DOI: 10.3390/cells8070671.
Google Scholar | Crossref8. Takamori, M . Myasthenia gravis: from the viewpoint of pathogenicity focusing on acetylcholine receptor clustering, trans-synaptic homeostatis and synaptic stability. Front Mol Neurosci 2020; 13: 86. DOI: 10.3389/fnmol.2020.00086.
Google Scholar | Crossref | Medline9. Lazaridis, K, Tzartos, SJ. Myasthenia gravis: autoantiobody specificity and their role in MG management. Frontiers Neurol 2020; 11: 596981.
Google Scholar | Crossref | Medline10. Gilhus, NE, Tzartos, S, Evoli, A, et al Myasthenia gravis. Nat Rev Dis Primers 2019; 5: 30. DOI: 10.1038/s41572-019-0079-y.
Google Scholar | Crossref | Medline11. Koneczny, I, Cossins, J, Waters, P, et al MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS ONE 2013; 8: e80695. DOI: 10.1371/journal.pone.0080695.
Google Scholar | Crossref | Medline12. Stathopoulos, P, Kumar, A, Van der Heiden, JA, et al Mechanisms underlying B cell immune dysregulation and autoantibody production in MuSK myasthenia gravis. Ann N Y Acad Sci 2018; 1412: 154–165. DOI: 10.1111/nyas.1353.
Google Scholar | Crossref | Medline13. Higuchi, O, Hamuro, J, Motomura, M, et al Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 2011; 69: 418–422. DOI: 10.1002/ana.22312.
Google Scholar | Crossref | Medline14. Leite, MI, Jacob, S, Viegas, S, et al IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain 2008; 131: 1940–1952.
Google Scholar | Crossref | Medline | ISI15. Jacob, S, Viegas, S, Leite, MI, et al Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol 2021; 99: 994–1001.
Google Scholar16. Hoffmann, S, Harms, L, Schuelke, M, et al Complement deposition at the neuromuscular junction in seronegative myasthenia gravis. Acta Neuropathol 2020; 139: 1119–1122.
Google Scholar | Crossref | Medline17. Schneider-Gold, C, Krenzer, M, Klinker, E, et al Immunoadsorption versus plasma exchange versus combination for treatment of myasthenic deterioration. Ther Adv Neurol Disord 2016; 9: 297–303.
Google Scholar | SAGE Journals | ISI18. Clifford, KM, Hobson-Webb, LD, Benatar, M, et al Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve 2019; 59: 404–410.
Google Scholar | Crossref | Medline19. Wolfe, GI, Kaminski, HJ, Aban, IB, et al Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 2016; 375: 511–522. DOI: 10.1056/NEJMoa160248.
Google Scholar | Crossref | Medline | ISI20. Hehir, MK, Hobson-Webb, LD, Benatar, M, et al Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology 2017; 89: 1069–1077.
Google Scholar | Crossref | Medline21. Topakian, R, Zimprich, F, Iglseder Embacher, N, et al High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. J Neurol 2019; 266: 699–706.
Google Scholar | Crossref | Medline22. Nowak, R, Coffey, C, Goldstein, J, et al Rituximab in patients with moderate to severe myasthenia gravis: a subgroup analysis of the BeatMG study. Muscle Nerve 2019; 60: S139.
Google Scholar23. Brauner, S, Eriksson-Dufva, A, Hietala, MA, et al Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol 2020; 77: 974–981.
Google Scholar | Crossref | Medline24. Beecher, G, Anderson, D, Siddiqi, ZA. Rituximab in refractory myasthenia gravis: extended prospective study results. Muscle Nerve 2018; 58: 452–455.
Google Scholar | Crossref | Medline25. Dos Santos, A, Noury, JB, Genestet, S, et al Efficacy and safety of rituximab in myasthenia gravis: a French multicentre real-life study. Eur J Neurol 2020; 27: 2277–2285.
Google Scholar | Crossref | Medline26. Gilhus, NE . Myasthenia gravis. N Engl J Med 2016; 375: 2570–2581.
Google Scholar | Crossref | Medline | ISI27. Choi, K, Hong, YH, Ahn, SH, et al Repeated low-dose rituximab treatment based on the assessment of circulating B cells in patients with refractory myasthenia gravis. Ther Adv Neurol Disord. Epub ahead of print 18 September 2019. DOI: 10.1177/1756286419871187.
Google Scholar | Crossref28. Lu, J, Zhong, H, Jing, S, et al Low-dose rituximab every 6 months for the treatment of acetylcholine receptor-positive refractory myasthenia gravis. Muscle Nerve 2020; 61: 310–315. DOI: 10.1002/mus.26790.
Google Scholar | Crossref29. BeatMG: Phase II trial of rituximab in myasthenia gravis , https://clinicaltrials.gov/ct2/show/NCT02110706
Google Scholar30. Tandan, R, Hehir, MK, Waheed, W, et al Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 2017; 56: 185–196.
Google Scholar | Crossref | Medline31. Hehir, MK, Hobson-Webb, LD, Benatar, M, et al Rituximab as treatment for anti-MuSK positive myasthenia gravis: multicenter blinded prospective review. Neurology 2017; 89: 1069–1077.
Google Scholar | Crossref | Medline32. Cree, BAC, Bennett, JL, Kim, HJ, et al Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019; 394: 1352–1363. DOI: 10.1016/S0140-6736(19) 31817-3.
Google Scholar | Crossref | Medline33. Myasthenia gravis inebilizumab trial (MINT) , https://clinicaltrials.gov/ct2/show/NCT04524273
Google Scholar34. Russell, A, Yaraskavitch, M, Fok, D, et al Obinutuzumab plus chlorambucil in a patient with severe myasthenia gravis and chronic lymphocytic leukemia. J Neuromuscul Dis 2017; 4: 251–257. DOI: 10.3233/JND-170211.
Google Scholar | Crossref | Medline35. Lee, DSW, Rojas, OL, Gommermann, JL. B cell depletion in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20: 179–199.
Google Scholar | Crossref | Medline36. US National Library of Medicine, ClinicalTrials.gov . A study of TACI (transmembrane activator and calcium-modulator and cyclophilin ligand (CAML) interactor): antibody fusion protein injection (RC18) in subjects with systemic myasthenia gravis, https://clinicaltrials.gov/ct2/show/NCT04302103
Google Scholar37. Alabbad, S, AlGaeed, M, Sikorski, P, et al Monoclonal antibody-based therapies for myasthenia gravis. BioDrugs 2020; 34: 557–566. DOI: 10.1007/s40259-020-00443-w.
Google Scholar | Crossref | Medline38. Hewett, K, Sanders, DB, Grove, RA, et al Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology 2018; 90: e1425–e1434. DOI: 10.1212/WNL.0000000000005323.
Google Scholar | Crossref | Medline39. Gomez, AM, Wilcox, N, Vrolix, K, et al Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early onset myasthenia gravis patients. J Immunol 2014; 193: 1055–1063.
Google Scholar | Crossref | Medline | ISI40. Jin, WL, Luo, Z, Yang, H. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies. J Immunol Res 2020; 2020: 9518137. DOI: 10.1155/2020/9518137.
Google Scholar | Crossref41. Schneider-Gold, C, Reinacher-Schick, A, Ellrichmann, G, et al Bortezomib: first experience in severe MuSK-antibody positive myasthenia gravis. Ther Adv Neurol Disord 2017; 10: 339–341.
Google Scholar | SAGE Journals | ISI42. Therapy of antibody-mediated autoimmune diseases by Bortezomib (TAVAB) , https://clinicaltrials.gov/ct2/show/NCT02102594
Google Scholar43. ClinicalTrials.gov . A phase 2, randomized, placebo-controlled study to evaluate safety, tolerability, and efficacy of TAK-079 in patients with generalized myasthenia gravis, https://clinicaltrials.gov/ct2/show/NCT04159805
Google Scholar44. Dalakas, MC, Alexopoulos, H, Spaeth, PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16: 601–617. DOI: 10.1038/s41582-020-0400-0.
Google Scholar | Crossref | Medline45. Muppidi, S, Utssugisawa, K, Benatar, M, et al Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve 2019; 60: 14–24.
Google Scholar | Medline46. US National Library of Medicine, ClinicalTrials.gov. Ravulizumab, 2020 , https://clinicaltrials.gov/ct2/show/NCT03920293
Google Scholar47. Howard, JF, Nowak, RJ, Wolfe, GI, et al Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol 2020; 77: 582–592.
Google Scholar | Crossref | Medline48. Dalakas, MC, Spaeth, PJ. The importance of FcRn in neuro-immunotherapies: from IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors. Ther Adv Neurol Disord. Epub ahead of print 26 February 2021. DOI: 10.1177/1756286421997381.
Google Scholar | Crossref49. Peter, HH, Ochs, HD, Cunningham-Rundles, C, et al Targeting FcRn for immunomodulation: benefits, risks, and practical considerations. J Allergy Clin Immunol 2020; 146: 479–491.
Google Scholar | Crossref | Medline50. Howard, JF, Bril, V, Vu, T, et al Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2021; 20: 526–536. DOI: 10.1016/S1474-4422(21)00159-9.
Google Scholar | Crossref | Medline51. Evaluating the pharmacodynamic noninferiority of efgartigimod PH20 SC administered subcutaneously as compared to efgartigimod administered intravenously in patients with generalized myasthenia gravis , https://clinicaltrials.gov/ct2/show/NCT04735432

留言 (0)

沒有登入
gif