Applications of Cryogenic Electron Microscopy in Biomineralization Research

Addison, WN, Masica, DL, Gray, JJ, McKee, MD. 2010. Phosphorylation-dependent inhibition of mineralization by osteopontin asarm peptides is regulated by phex cleavage. J Bone Miner Res. 25(4):695–705.
Google Scholar | Medline Akiva, A, Malkinson, G, Masic, A, Kerschnitzki, M, Bennet, M, Fratzl, P, Addadi, L, Weiner, S, Yaniv, K. 2015. On the pathway of mineral deposition in larval zebrafish caudal fin bone. Bone. 75:192–200.
Google Scholar | Crossref | Medline Akiva, A, Nelkenbaum, O, Schertel, A, Yaniv, K, Weiner, S, Addadi, L. 2019. Intercellular pathways from the vasculature to the forming bone in the zebrafish larval caudal fin: possible role in bone formation. J Struct Biol. 206(2):139–148.
Google Scholar | Crossref | Medline Bai, Y, Yu, Z, Ackerman, L, Zhang, Y, Bonde, J, Li, W, Cheng, Y, Habelitz, S. 2020. Protein nanoribbons template enamel mineralization. Proc Natl Acad Sci U S A. 117(32):19201–19208.
Google Scholar | Crossref | Medline Barros, NM, Hoac, B, Neves, RL, Addison, WN, Assis, DM, Murshed, M, Carmona, AK, McKee, MD. 2013. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res. 28(3):688–699.
Google Scholar | Crossref | Medline | ISI Carneiro, KM, Zhai, H, Zhu, L, Horst, JA, Sitlin, M, Nguyen, M, Wagner, M, Simpliciano, C, Milder, M, Chen, CL, et al. 2016. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep. 6:23105.
Google Scholar | Crossref | Medline | ISI Chen, Y, Zhang, Y, Ramachandran, A, George, A. 2015. DSPP is essential for normal development of the dental-craniofacial complex. J Dent Res. 95(3):302–310.
Google Scholar | SAGE Journals Cheng, Y . 2018. Single-particle cryo-EM—how did it get here and where will it go? Science. 361(6405):876–880.
Google Scholar | Crossref | Medline Dalmonico, GML, López, EO, Longuinho, MM, Checca, NR, Farina, M, Ersen, O, Rossi, AM, Rossi, AL. 2019. Insight by cryo-TEM into the growth and crystallization processes of calcium phosphate nanoparticles in aqueous medium. Mater Chem Phys. 237:121862.
Google Scholar | Crossref de Buffrénil, V, Quilhac, A. 2021. Bone tissue types: a brief account of currently used categories. In: de Buffrénil, V, de Ricqlès, AJ, Zylberberg, L, Padian, K, editors. Vertebrate skeletal histology and paleohistology. Boca Raton (FL): CRC Press. p. 183–190.
Google Scholar | Crossref De Yoreo, JJ, Gilbert, PUPA, Sommerdijk, NAJM, Penn, RL, Whitelam, S, Joester, D, Zhang, H, Rimer, JD, Navrotsky, A, Banfield, JF, et al. 2015. Crystal growth: crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science. 349(6247):aaa6760.
Google Scholar | Crossref | Medline Dey, A, Bomans, PHH, Mueller, FA, Will, J, Frederik, PM, de With, G, Sommerdijk, NAJM. 2010. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater. 9(12):1010–1014.
Google Scholar | Crossref | Medline | ISI Dubochet, J, McDowall, A. 1981. Vitrification of pure water for electron microscopy. J Microsc. 124(3):3–4.
Google Scholar | Crossref Ehrlich, H . 2019. Marine biological materials of invertebrate origin. New York (NY): Springer.
Google Scholar | Crossref Ehrlich, H, Bailey, E, Wysokowski, M, Jesionowski, T. 2021. Forced biomineralization: a review. Biomimetics (Basel). 6(3):46.
Google Scholar | Crossref | Medline Fang, PA, Conway, JF, Margolis, HC, Simmer, JP, Beniash, E. 2011. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc Natl Acad Sci U S A. 108(34):14097–14102.
Google Scholar | Crossref | Medline | ISI Fang, PA, Margolis, HC, Conway, JF, Simmer, JP, Beniash, E. 2013. CryoTEM study of effects of phosphorylation on the hierarchical assembly of porcine amelogenin and its regulation of mineralization in vitro. J Struct Biol. 183(2):250–257.
Google Scholar | Crossref | Medline | ISI Gal, A, Wirth, R, Kopka, J, Fratzl, P, Faivre, D, Scheffel, A. 2016. Macromolecular recognition directs calcium ions to coccolith mineralization sites. Science. 353(6299):590–593.
Google Scholar | Crossref | Medline Gascoigne, L, Magana, JR, Atkins, DL, Sproncken, CCM, Gumi-Audenis, B, Schoenmakers, SMC, Wakeham, D, Wanless, EJ, Voets, IK. 2021. Fractal-like R5 assembly promote the condensation of silicic acid into silica particles. J Colloid Interf Sci. 598:206–212.
Google Scholar | Crossref | Medline Gower, LB, Odom, DJ. 2000. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth. 210(4):719–734.
Google Scholar | Crossref Haimov, H, Shimoni, E, Brumfeld, V, Shemesh, M, Varsano, N, Addadi, L, Weiner, S. 2020. Mineralization pathways in the active murine epiphyseal growth plate. Bone. 130:115086.
Google Scholar | Crossref | Medline He, K, Sawczyk, M, Liu, C, Yuan, Y, Song, B, Deivanayagam, R, Nie, A, Hu, X, Dravid, VP, Lu, J, et al. 2020. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci Adv. 6(47):eaaz7524.
Google Scholar | Crossref | Medline Horning, M, Schertel, A, Schneider, R, Lemloh, ML, Schweikert, MR, Weiss, IM. 2020. Mineralized scale patterns on the cell periphery of the chrysophyte mallomonas determined by comparative 3D cryo-FIB SEM data processing. J Struct Biol. 209(1):107403.
Google Scholar | Crossref | Medline Jantschke, A, Pinkas, I, Schertel, A, Addadi, L, Weiner, S. 2020. Biomineralization pathways in calcifying dinoflagellates: uptake, storage in MgCaP-rich bodies and formation of the shell. Acta Biomater. 102:427–439.
Google Scholar | Crossref | Medline Jiang, W, Griffanti, G, Tamimi, F, McKee, MD, Nazhat, SN. 2020. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J Struct Biol. 212(1):107592.
Google Scholar | Crossref | Medline Jokisaari, JR, Wang, C, Qiao, Q, Hu, X, Reed, DA, Bleher, R, Luan, X, Klie, RF, Diekwisch, TGH. 2019. Particle-attachment-mediated and matrix/lattice-guided enamel apatite crystal growth. ACS Nano. 13(3):3151–3161.
Google Scholar | Crossref | Medline Kerschnitzki, M, Akiva, A, Shoham, AB, Asscher, Y, Wagermaier, W, Fratzl, P, Addadi, L, Weiner, S. 2016. Bone mineralization pathways during the rapid growth of embryonic chicken long bones. J Struct Biol. 195(1):82–92.
Google Scholar | Crossref | Medline Kerschnitzki, M, Akiva, A, Shoham, AB, Koifman, N, Shimoni, E, Rechav, K, Arraf, AA, Schultheiss, TM, Talmon, Y, Zelzer, E, et al. 2016. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. Bone. 83:65–72.
Google Scholar | Crossref | Medline Kim, JW, Zhang, H, Seymen, F, Koruyucu, M, Hu, Y, Kang, J, Kim, YJ, Ikeda, A, Kasimoglu, Y, Bayram, M. 2019. Mutations in relt cause autosomal recessive amelogenesis imperfecta. Clin Genet. 95(3):375–383.
Google Scholar | Crossref | Medline Kirkham, J, Firth, A, Vernals, D, Boden, N, Robinson, C, Shore, RC, Brookes, SJ, Aggeli, A. 2007. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 86(5):426–430.
Google Scholar | SAGE Journals | ISI Kotzsch, A, Gröger, P, Pawolski, D, Bomans, PHH, Sommerdijk, NAJM, Schlierf, M, Kröger, N. 2017. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol. 15(1):65.
Google Scholar | Crossref | Medline Kumar, S, Rechav, K, Kaplan-Ashiri, I, Gal, A. 2020. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci Adv. 6(42):eaaz7554.
Google Scholar | Crossref | Medline Li, X, Mooney, P, Zheng, S, Booth, CR, Braunfeld, MB, Gubbens, S, Agard, DA, Cheng, Y. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 10(6):584–590.
Google Scholar | Crossref | Medline Lowenstam, HA . 1981. Minerals formed by organisms. Science. 211(4487): 1126–1131.
Google Scholar | Crossref | Medline Ma, YX, Hoff, SE, Huang, XQ, Liu, J, Wan, QQ, Song, Q, Gu, JT, Heinz, H, Tay, FR, Niu, LN. 2021. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater. 120:213–223.
Google Scholar | Crossref | Medline Mahamid, J, Aichmayer, B, Shimoni, E, Ziblat, R, Li, C, Siegel, S, Paris, O, Fratzl, P, Weiner, S, Addadi, L. 2010. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A. 107(14):6316–6321.
Google Scholar | Crossref | Medline | ISI Mahamid, J, Sharir, A, Gur, D, Zelzer, E, Addadi, L, Weiner, S. 2011. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol. 174(3):527–535.
Google Scholar | Crossref | Medline | ISI Marzec, B, Walker, JM, Panagopoulou, M, Jhons, Y, Clare, D, Wheeler, A, Shaver, MP, Nudelman, F. 2019. Three-dimensional architecture and surface functionality of coccolith base plates. J Struct Biol. 208(2):127–136.
Google Scholar | Crossref | Medline Mirabello, G, Ianiro, A, Bomans, PHH, Yoda, T, Arakaki, A, Friedrich, H, de With, G, Sommerdijk, NAJM. 2020. Crystallization by particle attachment is a colloidal assembly process. Nat Mater. 19(4):391–396.
Google Scholar | Crossref | Medline Moradian-Oldak, J . 2012. Protein-mediated enamel mineralization. Front Biosci (Landmark Ed). 17:1996–2023.
Google Scholar Nakane, T, Kotecha, A, Sente, A, McMullan, G, Masiulis, S, Brown, PMGE, Grigoras, IT, Malinauskaite, L, Malinauskas, T, Miehling, J, et al. 2020. Single-particle cryo-EM at atomic resolution. Nature. 587(7832):152–156.
Google Scholar | Crossref | Medline Niu, LN, Jee, SE, Jiao, K, Tonggu, L, Li, M, Wang, L, Yang, YD, Bian, JH, Breschi, L, Jang, SS, et al. 2017. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 16(3):370–378.
Google Scholar | Crossref | Medline Nudelman, F, Pieterse, K, George, A, Bomans, PHH, Friedrich, H, Brylka, LJ, Hilbers, PAJ, de With, GD, Sommerdijk, NAJM. 2010. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 9(12):1004–1009.
Google Scholar | Crossref | Medline | ISI Patterson, JP, Xu, Y, Moradi, MA, Sommerdijk, NAJM, Friedrich, H. 2017. Cryo-TEM as an advanced analytical tool for materials chemists. ACC Chem Res. 50(7):1495–1501.
Google Scholar | Crossref | Medline Reznikov, N, Hoac, B, Buss, DJ, Addison, WN, Barros, NMT, McKee, MD. 2020. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone. 138:115447.
Google Scholar | Crossref | Medline Reznikov, N, Steele, JAM, Fratzl, P, Stevens, MM. 2016. A materials science vision of extracellular matrix mineralization. Nat Rev Mater. 1(8):16041.
Google Scholar | Crossref Schaffer, M, Pfeffer, S, Mahamid, J, Kleindiek, S, Laugks, T, Albert, S, Engel, BD, Rummel, A, Smith, AJ, Baumeister, W, et al. 2019. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods. 16(8):757–762.
Google Scholar Scheres, SHW . 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 180(3):

留言 (0)

沒有登入
gif