Axin2+ PDL Cells Directly Contribute to New Alveolar Bone Formation in Response to Orthodontic Tension Force

Bowman, AN, Van Amerongen, R, Palmer, TD, Nusse, R. 2013. Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin–responsive neural stem cells. Proc Natl Acad Sci. 110(18):7324–7329.
Google Scholar | Crossref | Medline Chang, M, Lin, H, Fu, H, Wang, B, Han, G, Fan, M. 2017. Microrna-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading. J Cell Physiol. 232(12):3762–3774.
Google Scholar | Crossref | Medline Feng, F, Akiyama, K, Liu, Y, Yamaza, T, Wang, TM, Chen, JH, Wang, BB, Huang, GT, Wang, S, Shi, S. 2010. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 16(1):20–28.
Google Scholar | Crossref | Medline Feng, L, Yang, R, Liu, D, Wang, X, Song, Y, Cao, H, He, D, Gan, Y, Kou, X, Zhou, Y. 2016. PDL progenitor-mediated PDL recovery contributes to orthodontic relapse. J Dent Res. 95(9):1049–1056.
Google Scholar | SAGE Journals | ISI Fu, HD, Wang, BK, Wan, ZQ, Lin, H, Chang, ML, Han, GL. 2016. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. J Mol Histol. 47(5):455–466.
Google Scholar | Crossref | Medline Huelter-Hassler, D, Tomakidi, P, Steinberg, T, Jung, BA. 2017. Orthodontic strain affects the Hippo-pathway effector YAP concomitant with proliferation in human periodontal ligament fibroblasts. Eur J Orthod. 39(3):251–257.
Google Scholar | Crossref | Medline Ivanova, A, Signore, M, Caro, N, Greene, ND, Copp, AJ, Martinez-Barbera, JP. 2005. In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis. 43(3):129–135.
Google Scholar | Crossref | Medline Jho, EH, Zhang, T, Domon, C, Joo, CK, Freund, JN, Costantini, F. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 22(4):1172–1183.
Google Scholar | Crossref | Medline | ISI Kawarizadeh, A, Bourauel, C, Gotz, W, Jager, A. 2005. Early responses of periodontal ligament cells to mechanical stimulus in vivo. J Dent Res. 84(10):902–906.
Google Scholar | SAGE Journals | ISI Krishnan, V, Davidovitch, Z. 2006. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 129(4):469.e1–469.e32.
Google Scholar | Crossref Li, X, Zhang, Y, Kang, H, Liu, W, Liu, P, Zhang, J, Harris, SE, Wu, D. 2005. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 280(20):19883–19887.
Google Scholar | Crossref | Medline | ISI Lim, X, Tan, SH, Koh, WLC, Chau, RMW, Yan, KS, Kuo, CJ, van Amerongen, R, Klein, AM, Nusse, R. 2013. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science. 342(6163):1226–1230.
Google Scholar | Crossref | Medline | ISI Odagaki, N, Ishihara, Y, Wang, Z, Ei Hsu Hlaing, E, Nakamura, M, Hoshijima, M, Hayano, S, Kawanabe, N, Kamioka, H. 2018. Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J Dent Res. 97(12):1374–1382.
Google Scholar | SAGE Journals | ISI Rangiani, A, Jing, Y, Ren, Y, Yadav, S, Taylor, R, Feng, JQ. 2016. Critical roles of periostin in the process of orthodontic tooth movement. Eur J Orthod. 38(4):373–378.
Google Scholar | Crossref | Medline Reitan, K . 1957. Some factors determining the evaluation of forces in orthodontics. Am J Orthod. 43(1):32–45.
Google Scholar | Crossref Ren, Y, Han, X, Ho, SP, Harris, SE, Cao, Z, Economides, AN, Qin, C, Ke, H, Liu, M, Feng, JQ. 2015. Removal of SOST or blocking its product sclerostin rescues defects in the periodontitis mouse model. FASEB J. 29(7):2702–2711.
Google Scholar | Crossref | Medline | ISI Seo, B-M, Miura, M, Gronthos, S, Mark Bartold, P, Batouli, S, Brahim, J, Young, M, Gehron Robey, P, Wang, CY, Shi, S. 2004. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364(9429):149–155.
Google Scholar | Crossref | Medline | ISI Shen, T, Qiu, L, Chang, H, Yang, Y, Jian, C, Xiong, J, Zhou, J, Dong, S. 2014. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol. 7(11):7872.
Google Scholar | Medline Sonoyama, W, Liu, Y, Fang, D, Yamaza, T, Seo, BM, Zhang, C, Liu, H, Gronthos, S, Wang, CY, Wang, S, et al. 2006. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 1:e79.
Google Scholar | Crossref | Medline | ISI Sun, B, Wen, Y, Wu, X, Zhang, Y, Qiao, X, Xu, X. 2018. Expression pattern of YAP and TAZ during orthodontic tooth movement in rats. J Mol Histol. 49(2):123–131.
Google Scholar | Crossref | Medline Takimoto, A, Kawatsu, M, Yoshimoto, Y, Kawamoto, T, Seiryu, M, Takano-Yamamoto, T, Hiraki, Y, Shukunami, C. 2015. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development. 142(4):787–796.
Google Scholar | Crossref | Medline Tang, N, Zhao, Z, Zhang, L, Yu, Q, Li, J, Xu, Z, Li, X. 2012. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci. 8(3):422–430.
Google Scholar | Crossref | Medline Van Amerongen, R, Bowman, AN, Nusse, R. 2012. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 11(3):387–400.
Google Scholar | Crossref | Medline | ISI Wang, B, Zhao, L, Fish, M, Logan, CY, Nusse, R. 2015. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature. 524(7564):180–185.
Google Scholar | Crossref | Medline Xie, X, Wang, J, Wang, K, Li, C, Zhang, S, Jing, D, Xu, C, Wang, X, Zhao, H, Feng, JQ. 2019. Axin2+-mesenchymal pdl cells, instead of k14+ epithelial cells, play a key role in rapid cementum growth. J Dent Res. 98(11):1262–1270.
Google Scholar | SAGE Journals | ISI Xu, HY, Nie, EM, Deng, G, Lai, LZ, Sun, FY, Tian, H, Fang, FC, Zou, YG, Wu, BL, Ou-Yang, J. 2017. Periostin is essential for periodontal ligament remodeling during orthodontic treatment. Mol Med Rep. 15(4):1800–1806.
Google Scholar | Crossref | Medline Xu, Q, Yuan, X, Zhang, X, Chen, J, Shi, Y, Brunski, JB, Helms, JA. 2019. Mechanoadaptive responses in the periodontium are coordinated by Wnt. J Dent Res. 98(6):689–697.
Google Scholar | SAGE Journals | ISI Yuan, X, Pei, X, Zhao, Y, Tulu, US, Liu, B, Helms, JA. 2018. A Wnt-responsive PDL population effectuates extraction socket healing. J Dent Res. 97(7):803–809.
Google Scholar | SAGE Journals | ISI Zhang, L, Liu, W, Zhao, J, Ma, X, Shen, L, Zhang, Y, Jin, F, Jin, Y. 2016. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway. Biochim Biophys Acta. 1860(10):2211–2219.
Google Scholar | Crossref | Medline Zhang, X, Yuan, X, Xu, Q, Arioka, M, Van Brunt, LA, Shi, Y, Brunski, J, Helms, JA. 2019. Molecular basis for periodontal ligament adaptation to in vivo loading. J Dent Res. 98(3):331–338.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif