1. Jin, R, Furnary, AP, Fine, SC, Blackstone, EH, Grunkemeier, GL. Using society of thoracic surgeons risk models for risk-adjusting cardiac surgery results. Ann Thorac Surg. Mar 2010;89(3):677-682. doi:
10.1016/j.athoracsur.2009.10.078 Google Scholar |
Crossref |
Medline2. Nashef, SA, Roques, F, Sharples, LD, et al. EuroSCORE II. Eur J Cardiothorac Surg. Apr 2012;41(4):734-744; discussion 744–5. doi:
10.1093/ejcts/ezs043 Google Scholar |
Crossref |
Medline3. Ad, N, Holmes, SD, Patel, J, Pritchard, G, Shuman, DJ, Halpin, L. Comparison of EuroSCORE II, original EuroSCORE, and The society of thoracic surgeons risk score in cardiac surgery patients. Ann Thorac Surg. Aug 2016;102(2):573-579. doi:
10.1016/j.athoracsur.2016.01.105 Google Scholar |
Crossref |
Medline4. Hekmat, K, Kroener, A, Stuetzer, H, et al. Daily assessment of organ dysfunction and survival in intensive care unit cardiac surgical patients. Ann Thorac Surg. May 2005;79(5):1555-1562. doi:
10.1016/j.athoracsur.2004.10.017 Google Scholar |
Crossref |
Medline5. Marshall, JC, Cook, DJ, Christou, NV, Bernard, GR, Sprung, CL, Sibbald, WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. Oct 1995;23(10):1638-1652. doi:
10.1097/00003246-199510000-00007 Google Scholar |
Crossref |
Medline6. Badreldin, AM, Kroener, A, Heldwein, MB, et al. Prognostic value of daily cardiac surgery score (CASUS) and its derivatives in cardiac surgery patients. Thorac Cardiovasc Surg. Oct 2010;58(7):392-397. doi:
10.1055/s-0030-1250080 Google Scholar |
Crossref |
Medline7. Hekmat, K, Doerr, F, Kroener, A, et al. Prediction of mortality in intensive care unit cardiac surgical patients. Eur J Cardiothorac Surg. Jul 2010;38(1):104-109. doi:
10.1016/j.ejcts.2010.01.053 Google Scholar |
Crossref |
Medline8. Doerr, F, Badreldin, AM, Bender, EM, et al. Outcome prediction in cardiac surgery: the first logistic scoring model for cardiac surgical intensive care patients. Minerva Anestesiol. Aug 2012;78(8):879-886.
Google Scholar |
Medline9. Doerr, F, Badreldin, AM, Heldwein, MB, et al. A comparative study of four intensive care outcome prediction models in cardiac surgery patients. J Cardiothorac Surg. Mar. 2011;1(6):21. doi:
10.1186/1749-8090-6-21 Google Scholar |
Crossref10. Badreldin, AM, Doerr, F, Ismail, MM, et al. Comparison between sequential organ failure assessment score (SOFA) and cardiac surgery score (CASUS) for mortality prediction after cardiac surgery. Thorac Cardiovasc Surg. Feb 2012;60(1):35-42. doi:
10.1055/s-0030-1270943 Google Scholar |
Medline11. Wilson, B, Tran, DTT, Dupuis, JY, McDonald, B. External validation and updating of the cardiac surgery score for prediction of mortality in a cardiac surgery intensive care unit. J Cardiothorac Vasc Anesth. Nov 2019;33(11):3028-3034. doi:
10.1053/j.jvca.2019.03.066 Google Scholar |
Crossref |
Medline12. Justice, AC, Covinsky, KE, Berlin, JA. Assessing the generalizability of prognostic information. Ann Intern Med. Mar. 16 1999;130(6):515-524.
Google Scholar |
Crossref13. Exarchopoulos, T, Charitidou, E, Dedeilias, P, Charitos, C, Routsi, C. Scoring systems for outcome prediction in a cardiac surgical intensive care unit: a comparative study. Am J Crit Care. Jul 2015;24(4):327-334; quiz 335. doi:
10.4037/ajcc2015500 Google Scholar |
Crossref |
Medline14. Howitt, SH, Caiado, C, McCollum, C, et al. Validation of three postoperative risk prediction models for intensive care unit mortality after cardiac surgery. Thorac Cardiovasc Surg. Nov 2018;66(8):651-660. doi:
10.1055/s-0037-1608897 Google Scholar |
Medline15. Austin, PC, Steyerberg, EW. The integrated calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. Stat Med. Sep. 20 2019;38(21):4051-4065. doi:
10.1002/sim.8281 Google Scholar |
Crossref16. Saito, T, Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one. 2015;10(3):e0118432-e0118432. doi:
10.1371/journal.pone.0118432 Google Scholar |
Crossref |
Medline17. Carrington, AM, Fieguth, PW, Qazi, H, et al. A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms. BMC Med Inform Decis Mak. Jan 6 2020;20(1):4. doi:
10.1186/s12911-019-1014-6 Google Scholar |
Crossref |
Medline18. DeLong, ER, DeLong, DM, Clarke-Pearson, DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. Sep 1988;44(3):837-845.
Google Scholar |
Crossref |
Medline19. Hanley, JA, McNeil, BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. Apr 1982;143(1):29-36. doi:
10.1148/radiology.143.1.7063747 Google Scholar |
Crossref |
Medline20. Vergouwe, Y, Steyerberg, EW, Eijkemans, MJ, Habbema, JD. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol. May 2005;58(5):475-483. doi:
10.1016/j.jclinepi.2004.06.017 Google Scholar |
Crossref |
Medline
留言 (0)