An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing

1. Sperling, RA, Aisen, PS, Beckett, LA et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Ecommendations From the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dementia 2011;7(3):280-292.
Google Scholar | Crossref | Medline | ISI2. Jeong, J . EEG Dynamics in Patients with Alzheimer’s Disease. Clinical Neurophysiol 2004;115(7):1490-1505.
Google Scholar | Crossref | Medline | ISI3. Nunez, PL, Srinivasan, R. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA, 2006.
Google Scholar4. Aghajani, H, Zahedi, E, Jalili, M et al. . Diagnosis of Early Alzheimer’s Disease Based on EEG Source Localization and a Standardized Realistic Head Model. IEEE J Biomed Health Inform 2013;17(6):1039-1045.
Google Scholar | Crossref | Medline5. Dubovik, S, Bouzerda-Wahlen, A, Nahum, L et al. Adaptive Reorganization of Cortical Networks in Alzheimer’s Disease. Clin Neurophysiol 2013;123(1):35-43.
Google Scholar | Crossref6. Mammone, N, De Salvo, S, Bonanno, L et al. Brain Network Analysis of Compressive Sensed High-density EEG Signals in AD and MCI Subjects. IEEE T Ind Inform 2018;15(1):527-536.
Google Scholar | Crossref7. Huang, C, Wahlund, LO, Dierks, T et al. Discrimination of Alzheimer’s Disease and Mild Cognitive Impairment by Equivalent EEG Sources: a Cross-sectional and Longitudinal Study. Clin Neurophysiol 2000;111(11):1961-1967.
Google Scholar | Crossref | Medline8. Jelic, V, Johansson, S, Almkvist, O et al. Quantitative Electroencephalography in Mild Cognitive Impairment: Longitudinal Changes and Possible Prediction of Alzheimer’s Disease. Neurobiol Aging 2000;21(4):533-540.
Google Scholar | Crossref | Medline9. Moretti, D, Frisoni, GB, Fracassi, C et al. MCI Patients’ EEGs Show Group Differences Between those Who Progress and those Who Do Not Progress to AD. Neurobiol Aging 2011;32(4):563-571.
Google Scholar | Crossref | Medline10. Luckhaus, C, Grass-Kapanke, B, Blaeser, I et al. Quantitative EEG in Progressing Vs Stable Mild Cognitive Impairment (MCI): Results of a 1-year Follow-up Study. Inter J Geriatr Psychiat: A J Psychiat Late Life Allied Sci 2008;23(11):1148-115.
Google Scholar | Crossref11. Morabito, FC, Campolo, M, Labate, D et al. A Longitudinal EEG Study of Alzheimer’s Disease Progression Based on a Complex Network Approach. Intern J Neural Syste 2015;25(02):1550005.
Google Scholar | Crossref | Medline12. Mammone, N, De Salvo, S, Ieracitano, C et al. A Permutation Disalignment Index-based Complex Network Approach to Evaluate Longitudinal Changes in Brain-electrical Connectivity. Entropy 2017;19(10):548.
Google Scholar | Crossref13. Mammone, N, Ieracitano, C, Adeli, H et al. . Permutation Jaccard Distance-based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects. IEEE T Neural Networks Learning Syst 2018;29(10):5122-5134.
Google Scholar | Crossref14. Dattola, S, La Foresta, F. An ELORETA Longitudinal Analysis of Resting State EEG Rhythms in Alzheimer’s Disease. Appl Sci 2020;10(16):5666.
Google Scholar | Crossref15. Şeker, M, Özbek, Y, Yener, G, Özerdem, MS. Complexity of EEG Dynamics for Early Diagnosis of Alzheimer’s Disease Using Permutation Entropy Neuromarker. Compu Meth Progra Bio 2021;206:106116.
Google Scholar | Crossref | Medline16. Huggins, CJ, Escudero, J, Parra, MA et al. Deep Learning of Resting-state Electroencephalogram Signals for 3-class Classification of Alzheimer’s Disease, Mild Cognitive Impairment and Healthy Ageing. J Neural Eng 2021; (): –.
Google Scholar | Crossref | Medline17. Toural, JES, Pedrón, AM, Reyes, EJM. A New Method for Classification of Subjects with Major Cognitive Disorder, Alzheimer Type, Based on Electroencephalographic Biomarkers. Inform Med Unlocked 2021;23:100537.
Google Scholar | Crossref18. Ieracitano, C, Mammone, N, Bramanti, A et al. . A Convolutional Neural Network Approach for Classification of Dementia Stages Based on 2D-spectral Representation of EEG Recordings. Neurocomputing 2019;323:96-107.
Google Scholar | Crossref19. Morabito, FC, Campolo, M, Ieracitano, C et al. Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. in 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI):1–6IEEE, 2016.
Google Scholar | Crossref20. Ieracitano, C, Mammone, N, Hussain, A et al. . A Novel Multi-modal Machine Learning Based Approach for Automatic Classification of EEG Recordings in Dementia. Neural Networks 2020;123:176-190.
Google Scholar | Crossref | Medline21. Edition, F . Diagnostic and Statistical Manual of Mental Disorders. Am Psychiatric Assoc 2013;21.
Google Scholar22. Kayser, J, Tenke, CE. On the Benefits of Using Surface Laplacian (current Source Density) Methodology in Electrophysiology. Intern J Psychophysiol 2015;97(3):171.
Google Scholar | Crossref | Medline23. Heinzel, G, Rüdiger, A, Schilling, R, Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows, 2002.
Google Scholar24. Yan, LC, Yoshua, B, Geoffrey, H. Deep Learning. Nature 2015;521(7553):436-444.
Google Scholar | Crossref | Medline25. Krizhevsky, A, Sutskever, I, Hinton, GE. Imagenet Classification with Deep Convolutional Neural Networks. Adv Neural Inform Proc Syst 2012;25:1097-1105.
Google Scholar26. Holzinger, A, Malle, B, Saranti, A et al. . Towards Multi-modal Causability with Graph Neural Networks Enabling Information Fusion for Explainable AI. Inform Fusion 2021;71:28-37.
Google Scholar | Crossref27. Selvaraju, RR, Cogswell, M, Das, A et al. . Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision:618–626, 2017.
Google Scholar28. Hazra, A . Using the Confidence Interval Confidently. Thoracic Disease 2017;9(10):4125.
Google Scholar | Crossref | Medline29. Bian, Z, Li, Q, Wang, L et al. . Relative Power and Coherence of EEG Series are Related to Amnestic Mild Cognitive Impairment in Diabetes. Frontiers Aging Neurosci 2014;6:11.
Google Scholar | Crossref | Medline30. Mammone, N, De Salvo, S, Ieracitano, C et al. Compressibility of High-Density EEG Signals in Stroke Patients. Sensors 2018;18(12):4107.
Google Scholar | Crossref

留言 (0)

沒有登入
gif