1. Siegel, RL, Miller, KD, Fuchs, HE, Jemal, A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi:
10.3322/caac.21654.
Google Scholar |
Crossref |
Medline2. Thanikachalam, K, Khan, G. Colorectal cancer and nutrition. Nutrients. 2019;11(1):164). doi:
10.3390/nu11010164.
Google Scholar |
Crossref3. Dekker, E, Tanis, PJ, Vleugels, JLA, Kasi, PM, Wallace, MB. Colorectal cancer. Lancet. 2019;394(10207):1467-1480. doi:
10.1016/S0140-6736(19)32319-0.
Google Scholar |
Crossref |
Medline4. Qin, X-g., Zeng, J-h., Lin, P, Mo, W-j., Li, Q, Feng, Z-b., et al. Prognostic value of small nuclear RNAs (snRNAs) for digestive tract pan- adenocarcinomas identified by RNA sequencing data. Pathol Res Pract. 2019;215(3):414-426. doi:
10.1016/j.prp.2018.11.004.
Google Scholar |
Crossref |
Medline5. Feng, M, Zhao, Z, Yang, M, Ji, J, Zhu, D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett. 2021;498:201-209. doi:
10.1016/j.canlet.2020.10.040.
Google Scholar |
Crossref |
Medline6. Tang, Y, Zong, S, Zeng, H, Ruan, X, Yao, L, Han, S, et al. MicroRNAs and angiogenesis: A new era for the management of colorectal cancer. Cancer Cell Int. 2021;21(1):221. doi:
10.1186/s12935-021-01920-0.
Google Scholar |
Crossref |
Medline7. Yang, L-P, Wang, Z-X, Zhang, R, Zhou, N, Wang, A-M, Liang, W, et al. Association between cigarette smoking and colorectal cancer sidedness: A multi-center big-data platform-based analysis. J Transl Med. 2021;19(1):150. doi:
10.1186/s12967-021-02815-4.
Google Scholar |
Crossref |
Medline8. Huang, L, Liang, X-Z, Deng, Y, Liang, Y-B, Zhu, X, Liang, X-Y, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract. 2020;216(6):152937. doi:
10.1016/j.prp.2020.152937.
Google Scholar |
Crossref |
Medline9. Simard, J, Kamath, S, Kircher, S. Survivorship guidance for patients with colorectal cancer. Curr Treat Options Oncol. 2019;20(5):38. doi:
10.1007/s11864-019-0635-4.
Google Scholar |
Crossref |
Medline10. Wang, Y, Wang, J, Yang, L, Qiu, L, Hua, Y, Wu, S, et al. Epigenetic regulation of intestinal peptide transporter PEPT1 as a potential strategy for colorectal cancer sensitization. Cell Death Dis. 2021;12(6):532. doi:
10.1038/s41419-021-03814-5.
Google Scholar |
Crossref |
Medline11. Huang, X, Hong, X, Wang, J, Sun, T, Yu, T, Yu, Y, et al. Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMed. 2020;61:103037. doi:
10.1016/j.ebiom.2020.103037.
Google Scholar |
Crossref |
Medline12. De Ruysscher, D, Niedermann, G, Burnet, NG, Siva, S, Lee, AWM, Hegi-Johnson, F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. doi:
10.1038/s41572-019-0064-5.
Google Scholar |
Crossref |
Medline13. Jethwa, KR, Jang, S, Mullikin, TC, Harmsen, WS, Petersen, MM, Olivier, KR, et al. Association of tumor genomic factors and efficacy for metastasis-directed stereotactic body radiotherapy for oligometastatic colorectal cancer. Radiother Oncol. 2020;146:29-36. doi:
10.1016/j.radonc.2020.02.008.
Google Scholar |
Crossref |
Medline14. Liu, R, Zhang, Q, Shen, L, Chen, S, He, J, Wang, D, et al. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol. 2020;36(5):493-507. doi:
10.1007/s10565-020-09524-6.
Google Scholar |
Crossref |
Medline15. Appelt, AL, Pløen, J, Harling, H, Jensen, FS, Jensen, LH, Jørgensen, JCR, et al. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol. 2015;16(8):919-927. doi:
10.1016/S1470-2045(15)00120-5.
Google Scholar |
Crossref |
Medline16. Lee, KJ, Ko, EJ, Park, Y-Y, Park, SS, Ju, EJ, Park, J, et al. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials. 2020;255:120151. doi:
10.1016/j.biomaterials.2020.120151.
Google Scholar |
Crossref |
Medline17. Wang, KS, Yu, G, Xu, C, Meng, XH, Zhou, J, Zheng, C, et al. Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC Med. 2021;19(1):76. doi:
10.1186/s12916-021-01942-5.
Google Scholar |
Crossref |
Medline18. Ying, Y, Wang, Y, Huang, X, Sun, Y, Zhang, J, Li, M, et al. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1. Oncogene. 2020;39(5):1004-1017. doi:
10.1038/s41388-019-1013-1.
Google Scholar |
Crossref |
Medline19. Shigeyasu, K, Toden, S, Ozawa, T, Matsuyama, T, Nagasaka, T, Ishikawa, T, et al. The PVT1 lncRNA is a novel epigenetic enhancer of MYC, and a promising risk-stratification biomarker in colorectal cancer. Mol Cancer. 2020;19(1):155. doi:
10.1186/s12943-020-01277-4.
Google Scholar |
Crossref |
Medline20. Zhang, W, Ge, H, Jiang, Y, Huang, R, Wu, Y, Wang, D, et al. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett. 2020;469:510-523. doi:
10.1016/j.canlet.2019.11.027.
Google Scholar |
Crossref |
Medline21. Wang, M-D, Xing, H, Li, C, Liang, L, Wu, H, Xu, X-F, et al. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. Cancer Cell Int. 2020;20:422. doi:
10.1186/s12935-020-01513-3.
Google Scholar |
Crossref |
Medline22. Mathur, R, Alver, BH, San Roman, AK, Wilson, BG, Wang, X, Agoston, AT, et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet. 2017;49(2):296-302. doi:
10.1038/ng.3744.
Google Scholar |
Crossref |
Medline23. Scholz, BA, Sumida, N, de Lima, CDM, Chachoua, I, Martino, M, Tzelepis, I, et al . WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet. 2019;51(12):1723-1731. doi:
10.1038/s41588-019-0535-3.
Google Scholar |
Crossref |
Medline24. Akhtar-Zaidi, B, Cowper-Sal·lari, R, Corradin, O, Saiakhova, A, Bartels, CF, Balasubramanian, D, et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science. 2012;336(6082):736-739. doi:
10.1126/science.1217277.
Google Scholar |
Crossref |
Medline25. Rousseaux, S, Seyve, E, Chuffart, F, Bourova-Flin, E, Benmerad, M, Charles, M-A, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 2020;18(1):306. doi:
10.1186/s12916-020-01736-1.
Google Scholar |
Crossref |
Medline26. Zheng, J-Y, Wang, C-Y, Gao, C, Xiao, Q, Huang, C-W, Wu, M, et al. MLL3 suppresses tumorigenesis through regulating TNS3 enhancer activity. Cell Death Dis. 2021;12(4):364. doi:
10.1038/s41419-021-03647-2.
Google Scholar |
Crossref |
Medline27. Font-Tello, A, Kesten, N, Xie, Y, Taing, L, Varešlija, D, Young, LS, et al. FiTAc-seq: fixed-tissue ChIP-seq for H3K27ac profiling and super-enhancer analysis of FFPE tissues. Nat Protoc. 2020;15(8):2503-2518. doi:
10.1038/s41596-020-0340-6.
Google Scholar |
Crossref |
Medline28. Wang, C, Zhang, L, Ke, L, Ding, W, Jiang, S, Li, D, et al. Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors. Nat Commun. 2020;11(1):6318. doi:
10.1038/s41467-020-20136-w.
Google Scholar |
Crossref |
Medline29. Gryder, BE, Wachtel, M, Chang, K, El Demerdash, O, Aboreden, NG, Mohammed, W, et al. Miswired enhancer logic drives a cancer of the muscle lineage. iScience. 2020;23(5):101103. doi:
10.1016/j.isci.2020.101103.
Google Scholar |
Crossref |
Medline30. Li, Y, Li, X, Yang, Y, Li, M, Qian, F, Tang, Z, et al. TRlnc: A comprehensive database for human transcriptional regulatory information of lncRNAs. Briefings Bioinf. 2021;22(2):1929-1939. doi:
10.1093/bib/bbaa011.
Google Scholar |
Crossref |
Medline31. An, J, Ha, E-M. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression. J Microbiol. 2020;58(11):967-977. doi:
10.1007/s12275-020-0375-y.
Google Scholar |
Crossref |
Medline32. Bhat, AA, Sharma, A, Pope, J, Krishnan, M, Washington, MK, Singh, AB, et al. Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PLoS One. 2012;7(6):e37174. doi:
10.1371/journal.pone.0037174.
Google Scholar |
Crossref |
Medline33. Bhat, AA, Ahmad, R, Uppada, SB, Singh, AB, Dhawan, P. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res. 2016;349(1):119-127. doi:
10.1016/j.yexcr.2016.10.005.
Google Scholar |
Crossref |
Medline34. Ouban, A . Claudin-1 role in colon cancer: An update and a review. Histol Histopathol. 2018;33(10):1013-1019. doi:
10.14670/HH-11-980.
Google Scholar |
Crossref |
Medline35. Ruffner, MA, Song, L, Maurer, K, Shi, L, Carroll, MC, Wang, JX, et al. Toll‐like receptor 2 stimulation augments esophageal barrier integrity. Allergy. 2019;74(12):2449-2460. doi:
10.1111/all.13968.
Google Scholar |
Crossref |
Medline36. Mei, S, Qin, Q, Wu, Q, Sun, H, Zheng, R, Zang, C, et al. Cistrome data browser: A data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45(D1):D658-D662. doi:
10.1093/nar/gkw983.
Google Scholar |
Crossref |
Medline37. Luan, N, Chen, Y, Li, Q, Mu, Y, Zhou, Q, Ye, X, et al. TRF-20-M0NK5Y93 suppresses the metastasis of colon cancer cells by impairing the epithelial-to-mesenchymal transition through targeting Claudin-1. Am J Transl Res. 2021;13(1):124-142.
Google Scholar |
Medline38. Singh, AB, Sharma, A, Dhawan, P. Claudin-1 expression confers resistance to anoikis in colon cancer cells in a Src-dependent manner. Carcinogenesis. 2012;33(12):2538-2547. doi:
10.1093/carcin/bgs275.
Google Scholar |
Crossref |
Medline39. Dino, P, D’Anna, C, Sangiorgi, C, Di Sano, C, Di Vincenzo, S, Ferraro, M, et al. Cigarette smoke extract modulates E-Cadherin, Claudin-1 and miR-21 and promotes cancer invasiveness in human colorectal adenocarcinoma cells. Toxicol Lett. 2019;317:102-109. doi:
10.1016/j.toxlet.2019.09.020.
Google Scholar |
Crossref |
Medline40. Assani, G, Zhou, Y. Effect of modulation of epithelial‑mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion (Review). Oncol Lett. 2019;17(1):23-30. doi:
10.3892/ol.2018.9636.
Google Scholar |
Crossref |
Medline
留言 (0)