Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products?

1.

Dobson R, Giovannoni G. Multiple sclerosis—a review. Eur J Neurol. 2019;26(1):27–40.

CAS  Article  Google Scholar 

2.

Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune Neuroinflammation. Immunol Rev. 2014;259(1):231–44.

CAS  Article  Google Scholar 

3.

Melbye P, Olsson A, Hansen TH, Søndergaard HB, Bang OA. Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurol Scand. 2019;139(3):208–19.

Article  Google Scholar 

4.

Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.

Article  Google Scholar 

5.

Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479(7374):538–41. https://www.nature.com/articles/nature10554.pdf.

6.

Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation. 2019;16(1):165.

Article  Google Scholar 

7.

Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun; 2019;10(1):1–12.

8.

Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Eilers E, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. 2020;180(6):1067-1080.e16.

CAS  Article  Google Scholar 

9.

Park J, Goergen CJ, HogenEsch H, Kim CH. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. J Immunol. 2016;196(5):2388–400.

CAS  Article  Google Scholar 

10.

Luu M, Visekruna A. Short-chain fatty acids: bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol. 2019;49(6):842–8. https://doi.org/10.1002/eji.201848009.

CAS  Article  PubMed  Google Scholar 

11.

Koh A, de Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.

CAS  Article  Google Scholar 

12.

Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–8.

CAS  Article  Google Scholar 

13.

Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci 2019; 20(12).

14.

Zeng Q, Junli G, Liu X, Chen C, Sun X, Li H, et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 2019;129:104468.

CAS  Article  Google Scholar 

15.

Park J, Wang Q, Wu Q, Mao-Draayer Y, Kim CH. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci Rep. 2019;9(1):1–13.

Google Scholar 

16.

Ayling RM, Kok K. Fecal calprotectin. Adv Clin Chem. 2018;87:161–90.

CAS  Article  Google Scholar 

17.

Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K, et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord. 2018;50:104–7.

Article  Google Scholar 

18.

Mulak A, Koszewicz M, Panek-Jeziorna M, Koziorowska-Gawron E, Budrewicz S. Fecal calprotectin as a marker of the gut immune system activation is elevated in parkinson’s disease. Front Neurosci. 2019;13:992.

Article  Google Scholar 

19.

Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.

Article  Google Scholar 

20.

Díaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: an update. Mult Scler Relat Disord. 2019;30:215–24.

Article  Google Scholar 

21.

Deutsche Gesellschaft für Neurologie (DGN) e.V. Diagnose und Therapie der Multiplen Sklerose, Neuromyelitis Optica Spektrum und MOG-IgG-assoziierte Erkrankungen (cited 2021 Feb 5). https://dgn.org/wp-content/uploads/2020/09/200902_MS-LL_Hauptteil_Konsultationsfassung_KKNMS_202008_final.pdf.

22.

Fenu G, Lorefice L, Frau F, Coghe GC, Marrosu MG, Cocco E. Induction and escalation therapies in multiple sclerosis. Antiinflamm Antiallergy Agents Med Chem. 2015;14(1):26–34.

CAS  Article  Google Scholar 

23.

Multiple Sklerose e.V. Qualitätshandbuch MS/NMOSD: Empfehlungen zur Therapie der Multiplen Sklerose / Neuromyelitis-optica-Spektrum-Erkrankungen für Ärzte. Kompetenznetz Multiple Sklerose (cited 2021 Feb 16); 2020. https://www.kompetenznetz-multiplesklerose.de/wp-content/uploads/2021/01/KKN_2004_WEB_medikamentenhandbuch.pdf.

24.

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.

CAS  Article  Google Scholar 

25.

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” J Psychiatr Res. 1975;12(3):189–98.

CAS  Article  Google Scholar 

26.

Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.

CAS  Article  Google Scholar 

27.

Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J. An inventory for measuring depression. Arch General Psychiatry. 1961;4:561–71.

CAS  Article  Google Scholar 

28.

Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72.

Article  Google Scholar 

29.

Berg-Hansen P, Vandvik B, Fagerhol M, Holmøy T. Calprotectin levels in the cerebrospinal fluid reflect disease activity in multiple sclerosis. J Neuroimmunol. 2009;216(1–2):98–102.

CAS  Article  Google Scholar 

30.

Nelson SM, Nguyen TM, McDonald JW, MacDonald JK. Natalizumab for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2018;8:CD006097.

PubMed  Google Scholar 

31.

Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.

CAS  Article  Google Scholar 

32.

Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS ONE. 2015;10(9):e0137429.

Article  Google Scholar 

33.

Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484.

CAS  Article  Google Scholar 

34.

Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun. 2018;92:12–34.

CAS  Article  Google Scholar 

35.

Jakobsdottir G, Bjerregaard JH, Skovbjerg H, Nyman M. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease: no difference compared with controls, but between genders. Scand J Gastroenterol. 2013;48(6):696–701.

CAS  Article  Google Scholar 

36.

Chen Z, Wu Y, Shrestha R, Gao Z, Zhao Y, Miura Y, et al. Determination of total, free and esterified short-chain fatty acid in human serum by liquid chromatography-mass spectrometry. Ann Clin Biochem. 2019;56(2):190–7.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif