Hearing Impaired Participants Improve More Under Envelope-Transcranial Alternating Current Stimulation When Signal to Noise Ratio Is High

1. Kaplan, W, Laing, R. Priority Medicines for Europe and the World. WHO; 2004.
Google Scholar2. Kaplan, W, Wirtz, V, Mantel, A, et al. Priority medicines for Europe and the world update 2013 report. Methodology. 2013;2: 99–102.
Google Scholar3. Mathers, C, Fat, D, Boerma, J. The Global Burden of Disease: 2004 Update. World Health Organization; 2008.
Google Scholar4. Pichora-Fuller, MK, Singh, G. Effects of age on auditory and cognitive processing: implications for hearing aid fitting and audiologic rehabilitation. Trends Amplif. 2006;10:29-59.
Google Scholar | SAGE Journals5. Lunner, T, Rudner, M, Rönnberg, J. Cognition and hearing aids. Scand J Psychol. 2009;50:395-403.
Google Scholar | Crossref | Medline6. Luo, H, Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron. 2007;54:1001-1010.
Google Scholar | Crossref | Medline7. Abrams, DA, Nicol, T, Zecker, S, et al. Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J Neurosci. 2008;28:3958-3965.
Google Scholar | Crossref | Medline8. Giraud, A-L, Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci. 2012;15:511-517.
Google Scholar | Crossref | Medline9. Zoefel, B, Archer-Boyd, A, Davis, MH. Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. Curr Biol. 2018a;28:401-408.e5.
Google Scholar | Crossref10. Thut, G, Schyns, PG, Gross, J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol. 2011;2:1-10.
Google Scholar | Crossref | Medline11. Zoefel, B, ten Oever, S, Sack, AT. The involvement of endogenous neural oscillations in the processing of rhythmic input: more than a regular repetition of evoked neural responses. Front Neurosci. 2018b;12:1-13.
Google Scholar | Medline12. Steinschneider, M, Nourski, KV, Fishman, YI. Representation of speech in human auditory cortex: is it special? Hear Res. 2013;305:57-73.
Google Scholar | Crossref | Medline13. Millman, RE, Johnson, SR, Prendergast, G. The role of phase-locking to the temporal envelope of speech in auditory perception and speech intelligibility. J Cognit Neurosci. 2015;27:533-545.
Google Scholar | Crossref | Medline14. Zoefel, B, VanRullen, R. EEG oscillations entrain their phase to high-level features of speech sound. Neuroimage 2016;124:16-23.
Google Scholar | Crossref | Medline15. Ding, N, Simon, JZ. Cortical entrainment to continuous speech: functional roles and interpretations. Front Hum Neurosci. 2014;8:1-7.
Google Scholar | Crossref | Medline16. Kösem, A, van Wassenhove, V. Distinct contributions of low- and high-frequency neural oscillations to speech comprehension. Lang Cognit Neurosci. 2017;32:536-544.
Google Scholar | Crossref17. Peelle, JE, Davis, MH. Neural oscillations carry speech rhythm through to comprehension. Front Psychol. 2012;3:1-17.
Google Scholar | Crossref | Medline18. Ding, N, Simon, JZ. Power and phase properties of oscillatory neural responses in the presence of background activity. J Comput Neurosci. 2013;34:337-343.
Google Scholar | Crossref | Medline19. Peelle, JE, Gross, J, Davis, MH. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cereb Cortex. 2013;23:1378-1387.
Google Scholar | Crossref | Medline20. Pichora-Fuller, MK, Schneider, BA, Daneman, M. How young and old adults listen to and remember speech in noise. J Acoust Soc Am. 1995;97:593-608.
Google Scholar | Crossref | Medline21. Schneider, BA, Daneman, M, Pichora-Fuller, MK. Listening in aging adults: from discourse comprehension to psychoacoustics. Can J Exp Psychol. 2002;56:139-152.
Google Scholar | Crossref | Medline22. Peelle, JE, Troiani, V, Wingfield, A, et al. Neural processing during older adults’ comprehension of spoken sentences: age differences in resource allocation and connectivity. Cereb Cortex. 2010;20:773-782.
Google Scholar | Crossref | Medline23. Besle, J, Schevon, CA, Mehta, AD, et al. Tuning of the human neocortex to the temporal dynamics of attended events. J Neurosci. 2011;31:3176-3185.
Google Scholar | Crossref | Medline24. Borch Petersen, E, Lunner, T, Vestergaard, MD, et al. Danish reading span data from 283 hearing-aid users, including a sub-group analysis of their relationship to speech-in-noise performance. Int J Audiol. 2016;55:254-261 .
Google Scholar | Crossref | Medline25. Schneider, BA, Daneman, M, Murphy, DR. Speech comprehension difficulties in older adults: cognitive slowing or age-related changes in hearing? Psychol Aging. 2005;20:261-271.
Google Scholar | Crossref | Medline26. Fitzgibbons, PJ, Gordon-Salant, S. Aging and temporal discrimination in auditory sequences. J Acoust Soc Am. 2001;109:2955-2963.
Google Scholar | Crossref | Medline27. Gordon-Salant, S, Yeni-Komshian, GH, Fitzgibbons, PJ, et al. Age-related differences in identification and discrimination of temporal cues in speech segments. J Acoust Soc Am. 2006;119:2455-2466.
Google Scholar | Crossref | Medline28. McAuley, JD, Jones, MR, Holub, S, et al. The time of our lives: life span development of timing and event tracking. J Exp Psychol Gen. 2006;135:348-367.
Google Scholar | Crossref | Medline29. Henry, MJ, Herrmann, B, Kunke, D, et al. Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nat Commun. 2017;8:15801.
Google Scholar | Crossref | Medline30. Petersen, EB, Wöstmann, M, Obleser, J, et al. Neural tracking of attended versus ignored speech is differentially affected by hearing loss. J Neurophysiol. 2017;117:18-27.
Google Scholar | Crossref | Medline31. Fröhlich, F, McCormick, DA. Endogenous electric fields may guide neocortical network activity. Neuron 2010;67:129-143.
Google Scholar | Crossref | Medline32. Antal, A, Paulus, W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:1-4.
Google Scholar | Crossref | Medline33. Herrmann, CS, Rach, S, Neuling, T, et al. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:1-13.
Google Scholar | Crossref | Medline34. Riecke, L, Formisano, E, Sorger, B, et al. Neural entrainment to speech modulates speech intelligibility. Curr Biol. 2018;28:161-169.e5.
Google Scholar | Crossref | Medline35. Wilsch, A, Neuling, T, Obleser, J, et al. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage. 2018;172:766-774.
Google Scholar | Crossref | Medline36. Heimrath, K, Fiene, M, Rufener, KS, et al. Modulating human auditory processing by transcranial electrical stimulation. Front Cell Neurosci. 2016;10:53.
Google Scholar | Crossref | Medline37. Neuling, T, Rach, S, Wagner, S, et al. Good vibrations: oscillatory phase shapes perception. Neuroimage. 2012a;63:771-778.
Google Scholar | Crossref | Medline38. Riecke, L, Formisano, E, Herrmann, CS, et al. 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimul. 2015a;8:777-783.
Google Scholar | Crossref | Medline39. Riecke, L, Sack, AT, Schroeder, CE, et al. Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr Biol. 2015b;25:3196-3201.
Google Scholar | Crossref | Medline40. Kadir, S, Kaza, C, Weissbart, H, et al. Modulation of speech-in-noise comprehension through transcranial current stimulation with the phase-shifted speech envelope. IEEE Trans Neural Syst Rehabil Eng. 2020;28:23-31.
Google Scholar | Crossref | Medline41. Keshavarzi, M, Kegler, M, Kadir, S, et al. Transcranial alternating current stimulation in the theta band but not in the delta band modulates the comprehension of naturalistic speech in noise. Neuroimage. 2020;210:116557.
Google Scholar | Crossref | Medline42. Ruhnau, P, Rufener, KS, Heinze, HJ, et al. Pulsed transcranial electric brain stimulation enhances speech comprehension. Brain Stimul. 2020;13:1402-1411.
Google Scholar | Crossref | Medline43. Rufener, KS, Oechslin, MS, Zaehle, T, et al. Transcranial Alternating Current Stimulation (tACS) differentially modulates speech perception in young and older adults. Brain Stimul. 2016;9:560-565.
Google Scholar | Crossref | Medline44. Erkens, J, Schulte, M, Vormann, M, et al. Lacking effects of envelope transcranial alternating current stimulation indicate the need to revise envelope transcranial alternating current stimulation methods. Neurosci Insights. 2020;15:263310552093662.
Google Scholar | SAGE Journals45. Brunoni, AR, Amadera, J, Berbel, B, et al. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14:1133-1145.
Google Scholar | Crossref | Medline46. Neuling, T, Rach, S, Herrmann, CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7:161.
Google Scholar | Crossref | Medline47. Wagner, K, Kühnel, V, Kollmeier, B. Entwicklung und Evaluation eines Satztests für die deutsche Sprache, Teil 1: Design des Oldenburger Satztests. Zeischrift für Audiol. 2001;1:4-15.
Google Scholar48. Brand, T, Kollmeier, B. Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests. J Acoust Soc Am. 2002;111:2801-2810.
Google Scholar | Crossref | Medline49. Wagner, S, Rampersad, SM, Aydin, Ü, et al. Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng. 2014;11:016002.
Google Scholar | Crossref | Medline50. Wagner, S, Burger, M, Wolters, CH. An optimization approach for well-targeted transcranial direct current stimulation. SIAM J Appl Math. 2015;76:2154-2174.
Google Scholar | Crossref51. Baltus, A, Wagner, S, Wolters, CH, et al. Optimized auditory transcranial alternating current stimulation improves individual auditory temporal resolution. Brain Stimul. 2018;11:118-124.
Google Scholar | Crossref | Medline52. Neuling, T, Wagner, S, Wolters, CH, et al. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry. 2012b;3:1-10.
Google Scholar | Medline53. Krause, B, Kadosh, RC (2014) Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 2014;8:1-12.
Google Scholar | Crossref | Medline54. Kochkin, S. MarkeTrak V: “Why my hearing aids are in the drawer”: the consumers’ perspective. Hear J. 2000;53:34-41.
Google Scholar |

留言 (0)

沒有登入
gif