Alcohol-induced Aggression

1. Lischinsky, JE, Lin, D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23:1317-1328.
Google Scholar | Crossref | Medline2. Golden, SA, Jin, M, Shaham, Y. Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J Neurosci. 2019;39:3996-4008.
Google Scholar | Crossref | Medline3. Alcohol and Violence . In 10th Special Report to the U.S. Congress on Alcohol and Health. Alcohol and Violence; 2000; 55-66.
Google Scholar4. Attwood, AS, Munafò, MR. Effects of acute alcohol consumption and processing of emotion in faces: implications for understanding alcohol-related aggression. J Psychopharmacol. 2014;28:719-732.
Google Scholar | SAGE Journals5. Najman, JM, Plotnikova, M, Horwood, J, et al. Does adolescent heavier alcohol use predict young adult aggression and delinquency? Parallel analyses from four Australasian cohort studies. Aggress Behav. 2019;45:427-436.
Google Scholar | Crossref | Medline6. Helmy, M, Zhang, J, Wang, H. Neurobiology and neural circuits of aggression. In: Wang, H. , ed. Neural Circuits of Innate Behaviors. Springer; 2020;9-22.
Google Scholar | Crossref7. Asahina, K . Neuromodulation and strategic action choice in Drosophila aggression. Annu Rev Neurosci. 2017;40:51-75.
Google Scholar | Crossref | Medline8. Nilsen, SP, Chan, YB, Huber, R, Kravitz, EA. Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2004;101:12342-12347.
Google Scholar | Crossref | Medline9. Vrontou, E, Nilsen, SP, Demir, E, Kravitz, EA, Dickson, BJ. Fruitless regulates aggression and dominance in Drosophila. Nat Neurosci. 2006;9:1469-1471.
Google Scholar | Crossref | Medline10. Guo, X, Dukas, R. The cost of aggression in an animal without weapons. Ethology. 2020;126:24-31.
Google Scholar | Crossref11. Yurkovic, A, Wang, O, Basu, AC, Kravitz, EA. Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci USA. 2006;103:17519-17524.
Google Scholar | Crossref | Medline12. Hoffmann, AA . A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Anim Behav. 1987;35:807-818.
Google Scholar | Crossref13. Nunney, L . The colonization of oranges by the cosmopolitan Drosophila. Oecologia. 1996;108:552-561.
Google Scholar | Crossref | Medline14. McKenzie, JA, McKechnie, SW. A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia. 1979;40:299-309.
Google Scholar | Crossref | Medline15. Marks, RW, Brittnacher, JG, McDonald, JF, Prout, T, Ayala, FJ. Wineries, drosophila, alcohol, and. Oecologia. 1980;47:141-144.
Google Scholar | Crossref | Medline16. McKenzie, JA, Parsons, PA. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia. 1972;10:373-388.
Google Scholar | Crossref | Medline17. Parsons, PA, Spence, GE. Ethanol utilization: threshold differences among three Drosophila species. Am Nat. 1981;117:568-571.
Google Scholar | Crossref18. Lynch, ZR, Schlenke, TA, Morran, LT, de Roode, JC. Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster. PLoS One. 2017;12:e0180182.
Google Scholar | Crossref | Medline19. Milan, NF, Kacsoh, BZ, Schlenke, TA. Alcohol consumption as self-medication against blood-borne parasites in the fruit fly. Curr Biol. 2012;22:488-493.
Google Scholar | Crossref | Medline20. Fleury, F, Gibert, P, Ris, N, Allemand, R. Ecology and life history evolution of frugivorous Drosophila parasitoids. Adv Parasitol. 2009;70:3-44.
Google Scholar | Crossref | Medline21. Park, A, Ghezzi, A, Wijesekera, TP, Atkinson, NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacol. 2017;122:22-35.
Google Scholar | Crossref | Medline22. Ghezzi, A, Krishnan, HR, Atkinson, NS. Susceptibility to ethanol withdrawal seizures is produced by BK channel gene expression. Addict Biol. 2014;19:332-337.
Google Scholar | Crossref | Medline23. Robinson, BG, Khurana, S, Kuperman, A, Atkinson, NS. Neural adaptation leads to cognitive ethanol dependence. Curr Biol. 2012;22:2338-2341.
Google Scholar | Crossref | Medline24. Petruccelli, E, Feyder, M, Ledru, N, Jaques, Y, Anderson, E, Kaun, KR. Alcohol activates Scabrous-Notch to influence associated memories. Neuron. 2018;100:1209-1223.e4.
Google Scholar | Crossref | Medline25. Petruccelli, E, Kaun, KR. Insights from intoxicated Drosophila. Alcohol. 2019;74:21-27.
Google Scholar26. Billeter, J-C, Levine, JD. The role of cVA and the odorant binding protein Lush in social and sexual behavior in Drosophila melanogaster. Front Ecol Evol. 2015;3:75.
Google Scholar | Crossref27. Ziegler, AB, Berthelot-Grosjean, M, Grosjean, Y. The smell of love in Drosophila. Front Physiol. 2013;4:72.
Google Scholar | Crossref | Medline28. Kim, MS, Repp, A, Smith, DP. Lush odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics. 1998;150:711-721.
Google Scholar | Crossref | Medline29. Kruse, SW, Zhao, R, Smith, DP, Jones, DN. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol. 2003;10:694-700.
Google Scholar | Crossref | Medline30. Yuan, Q, Song, Y, Yang, CH, Jan, LY, Jan, YN. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci. 2014;17:81-88.
Google Scholar | Crossref | Medline31. Hoopfer, ED . Neural control of aggression in Drosophila. Curr Opin Neurobiol. 2016;38:109-118.
Google Scholar | Crossref | Medline32. Wang, L, Han, X, Mehren, J, et al. Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci. 2011;14:757-762.
Google Scholar | Crossref | Medline33. Park, A, Tran, T, Scheuermann, EA, Smith, DP, Atkinson, NS. Alcohol potentiates a pheromone signal in flies. eLife. 2020;9:e59853.
Google Scholar | Crossref | Medline34. Barrows, WM . The reactions of the pomace fly, Drosophila ampelophila loew, to odorous substances. J Exp Zool. 1907;4:515-537.
Google Scholar | Crossref35. Zhu, J, Park, KC, Baker, TC. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol. 2003;29:899-909.
Google Scholar | Crossref | Medline36. Ronderos, DS, Lin, CC, Potter, CJ, Smith, DP. Farnesol-detecting olfactory neurons in Drosophila. J Neurosci. 2014;34:3959-3968.
Google Scholar | Crossref | Medline37. Khrustalev, VV, Khrustaleva, TA, Lelevich, SV. Ethanol binding sites on proteins. J Mol Graph Model. 2017;78:187-194.
Google Scholar | Crossref | Medline38. Krishnan, HR, Al-Hasan, YM, Pohl, JB, Ghezzi, A, Atkinson, NS. A role for dynamin in triggering ethanol tolerance. Alcohol Clin Exp Res. 2012;36:24-34.
Google Scholar | Crossref | Medline39. Park, A, Tran, T, Gutierrez, L, et al. Alcohol-induced aggression in Drosophila. Addict Biol. 2021;26:e13045.
Google Scholar | Crossref | Medline40. Ryner, LC, Goodwin, SF, Castrillon, DH, et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell. 1996;87:1079-1089.
Google Scholar | Crossref | Medline41. Chan, YB, Kravitz, EA. Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proc Natl Acad Sci USA. 2007;104:19577-19582.
Google Scholar | Crossref | Medline42. Zhang, Y, Ng, R, Neville, MC, Goodwin, SF, Su, CY. Distinct roles and synergistic function of FruM isoforms in Drosophila olfactory receptor neurons. Cell Rep. 2020;33:108516.
Google Scholar | Crossref | Medline43. Pohl, JB, Baldwin, BA, Dinh, BL, et al. Ethanol preference in Drosophila melanogaster is driven by its caloric value. Alcohol Clin Exp Res. 2012;36:1903-1912.
Google Scholar | Crossref | Medline44. Jin, S, Cao, Q, Yang, F, et al. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab. 2021;3:337-351.
Google Scholar | Crossref | Medline45. Cui, C, Koob, GF. Titrating tipsy targets: the neurobiology of low-dose alcohol. Trends Pharmacol Sci. 2017;38:556-568.
Google Scholar | Crossref | Medline46. Miller, CN, Kamens, HM. The role of nicotinic acetylcholine receptors in alcohol-related behaviors. Brain Res Bull. 2020;163:135-142.
Google Scholar | Crossref | Medline47. Nagata, K, Aistrup, GL, Huang, CS, et al. Potent modulation of neuronal nicotinic acetylcholine receptor-channel by ethanol. Neurosci Lett. 1996;217:189-193.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif