Evaluation of the diagnostic value of the renal resistive index as a marker of the subclinical development of cardiorenal syndrome in MMVD dogs

1. Ronco, C, Haapio, M, House, AA, et al. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52: 1527–1539.
Google Scholar | Crossref | Medline | ISI2. Ferreira, JP, Rossignol, P, Zannad, F. Renin-angiotensin-aldosterone system and kidney interactions in heart failure. J Renin Angiotensin Aldosterone Syst 2019; 20(4): 1470320319889415.
Google Scholar | SAGE Journals | ISI3. www.iris-kidney.com/pdf/IRIS_Staging_of_CKD_modified_2019.pdf
Google Scholar4. Grande, D, Gioia, MI, Terlizzese, P, et al. Heart failure and kidney disease. Adv Exp Med Biol 2018; 1067: 219–238.
Google Scholar | Crossref | Medline5. Szczepankiewicz, B, Pasławska, U, Pasławski, R, et al. The urine podocin/creatinine ratio as a novel biomarker of cardiorenal syndrome in dogs due to degenerative mitral valve disease. J Physiol Pharmacol 2019; 70: 229–238.
Google Scholar6. Szczepankiewicz, B, Bąchor, R, Pasławski, R, et al. Evaluation of tryptic podocin peptide in urine sediment using LC-MS-MRM method as a potential biomarker of glomerular injury in dogs with clinical signs of renal and cardiac disorders. Molecules 2019; 24: 3088.
Google Scholar | Crossref7. Szczepankiewicz, B, Pasławska, U, Nowak, M, et al. Early detection of active glomerular lesions in dogs and cats using podocin. J Vet Res 2019; 63(4): 573–577.
Google Scholar | Crossref | Medline8. Parolini, C, Noce, A, Staffolani, E, et al. Renal resistive index and long-term outcome in chronic nephropathies. Radiology 2009; 252: 888–896.
Google Scholar | Crossref | Medline | ISI9. Rawashadeh, YF, Horlyck, A, Mortensen, J, et al. Short- and long-term repeatability of intrarenal resistive index in the pig. Invest Radiol 2001; 36: 341–346.
Google Scholar | Crossref | Medline10. Cianci, R, Martina, P, Cianci, M, et al. Ischemic nephropathy: proteinuria and renal resistance index could suggest if revascularization is recommended. Ren Fail 2010; 32: 1167–1171.
Google Scholar | Crossref | Medline | ISI11. Torroja, RN. Vascular resistance determination with Doppler ultrasound in canine and feline disease. Bellaterra: Universidade Autônoma de Barcelona Press, 2007.
Google Scholar12. Hanamura, K, Tojo, A, Kinugasa, S, et al. The resistive index is a marker of renal function, pathology, prognosis, and responsiveness to steroid therapy in chronic kidney disease patients. Int J Nephrol 2012; 2012: 139565.
Google Scholar | Crossref | Medline13. Galesić, K, Sabljar-Matovinović, M, Tomić, M, et al. Renal vascular resistance in glomerular diseases-correlation of resistance index with biopsy findings. Coll Antropol 2004; 28: 667–674.
Google Scholar | Medline14. Ogawa-Akiyama, A, Sugiyama, H, Kitagawa, M, et al. Serum cystatin C is an independent biomarker associated with the renal resistive index in patients with chronic kidney disease. PLoS One 2018; 13(3): e0193695.
Google Scholar | Crossref | Medline15. Pouchelon, JL, Atkins, CE, Bussadori, C, et al. Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement. J Small Anim Pract 2015; 56: 537–552.
Google Scholar | Crossref | Medline16. Chetboul, V, Daste, T, Gouni, V, et al. Renal resistive index in 55 dogs with degenerative mitral valve disease. J Vet Intern Med 2012; 26: 101–108.
Google Scholar | Crossref | Medline17. Keene, BW, Atkins, CE, Bonagura, JD, et al. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med 2019; 33(3): 1127–1140.
Google Scholar | Crossref | Medline18. Gójska-Zygner, O, Zygner, W. Hyperaldosteronism and its association with hypotension and azotaemia in canine babesiosis. Vet Q 2011; 35: 37–42.
Google Scholar | Crossref19. Pasławska, U. Obraz zmian neurohormonalnych u psów z niewydolnością serca na tle endokardiozy mitralnej, vol. 14. University of Environmental and Life Sciences Press, 2008; p.11.
Google Scholar20. Buchanan, JW, Bücheler, J. Vertebral scale system to measure canine heart size in radiographs. J Am Vet Med Assoc 1995; 15: 194–199.
Google Scholar21. Wood, AK, McCarthy, PH. Ultrasonographic-anatomic correlation and an imaging protocol of the normal canine kidney. Am J Vet Res 1990; 51: 103–108.
Google Scholar | Medline22. Tipisca, V, Murino, C, Cortese, L, et al. Resistive index for kidney evaluation in normal and diseased cats. J Feline Med Surg 2015; 18: 471–475.
Google Scholar | SAGE Journals23. Morrow, KL, Salman, MD, Lappin, MR, et al. Comparison of the resistive index to clinical parameters in dogs with renal disease. Vet Radiol Ultrasound 1996; 37: 193–199.
Google Scholar | Crossref | ISI24. Nyman, HT, Kristensen, AT, Lee, MH, et al. Characterization of canine superficial tumors using gray-scale B mode, color flow mapping, and spectral doppler ultrasonography–a multivariate study. Vet Radiol Ultrasound 2006; 47: 192–198.
Google Scholar | Crossref | Medline | ISI25. Rivers, BJ, Walter, PA, Polzin, DJ, et al. Duplex Doppler estimation of Intrarenal Pourcelot resistive index in dogs and cats with renal disease. J Vet Intern Med 1997; 11: 250–260.
Google Scholar | Crossref | Medline | ISI26. Brown, NJ, Vaughan, DE. Angiotensin-converting enzyme inhibitors. Circulation 1998; 97: 1411–1420.
Google Scholar | Crossref | Medline | ISI27. Pelander, L, Häggström, J, Larsson, A, et al. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. J Vet Intern Med 2019; 33: 630–639.
Google Scholar | Crossref | Medline28. Lin, ZY, Wang, LY, Yu, ML, et al. Influence of age on intrarenal resistive index measurement in normal subjects. Abdom Imaging 2003; 28: 230–232.
Google Scholar | Crossref | Medline29. Quisi, A, Kurt, IH, Şahin, DY, et al. Evaluation of the relationship between renal resistive index and extent and complexity of coronary artery disease in patients with acute coronary syndrome. Kardiol Pol 2017; 75: 1199–1207.
Google Scholar | Crossref | Medline30. Siwinska, N, Zak, A, Slowikowska, M, et al. An assessment of the utility and repeatability of the renal resistive index in horses. PLoS One 2019; 14: e0226941.
Google Scholar | Crossref | Medline31. Iacoviello, M, Doronzo, A, Paradies, V, et al. The independent association between altered renal arterial resistance and loop diuretic dose in chronic heart failure outpatients. Int J Cardiol Heart Vasc 2015; 25: 119–123.
Google Scholar32. Mochel, JP, Peyrou, M, Fink, M, et al. Capturing the dynamics of systemic Renin-Angiotensin-Aldosterone System (RAAS) peptides heightens the understanding of the effect of benazepril in dogs. J Vet Pharmacol Ther 2013; 36: 174–180.
Google Scholar | Crossref | Medline33. Atkins, CE, Häggström, J. Pharmacological management of myxomatous mitral valve disease in dogs. J Vet Cardiol 2012; 14: 165–184.
Google Scholar | Crossref | Medline | ISI34. Ovaert Elliott, J, Bernay, F, et al. Aldosterone receptor antagonists – how cardiovascular actions may explain their beneficial effects in heart failure. J Vet Pharmacol Ther 2010; 33: 109–117.
Google Scholar | Crossref | Medline35. Chen, HY, Lien, YH, Huang, HP. Association of renal resistive index, renal pulsatility index, systemic hypertension, and albuminuria with survival in dogs with pituitary-dependent hyperadrenocorticism. Int J Endocrinol 2016; 2016: 3814034.
Google Scholar | Crossref | Medline36. Kanno, N, Kuse, H, Kawasaki, M, et al. Effects of pimobendan for mitral valve regurgitation in dogs. J Vet Med Sci 2007; 69(4): 373–377.
Google Scholar | Crossref | Medline37. Darmon, M, Schortgen, F, Leon, R, et al. Impact of mild hypoxemia on renal function and renal resistive index during mechanical ventilation. Intensive Care Med 2009; 35: 1031–1038.
Google Scholar | Crossref | Medline38. Bigé, N, Lévy, PP, Callard, P, et al. Renal arterial resistive index is associated with severe histological changes and poor renal outcome during chronic kidney disease. BMC Nephrol 2012; 13: 139–142.
Google Scholar | Crossref | Medline39. Hamano, K, Nitta, A, Ohtake, T, et al. Associations of renal vascular resistance with albuminuria and other macroangiopathy in type 2 diabetic patients. Diabetes Care 2008; 31: 1853–1860.
Google Scholar | Crossref | Medline40. Lorin, J, Guilland, JC, Stamboul, K, et al. Increased symmetric dimethylarginine level is associated with worse hospital outcomes through altered left ventricular ejection fraction in patients with acute myocardial infarction. PLoS One 2017; 26: 12:e0169979.
Google Scholar41. Choi, BS, Moon, HS, Seo, SH, et al. Evaluation of serum cystatin-C and symmetric dimethylarginine concentrations in dogs with heart failure from chronic mitral valvular insufficiency. J Vet Med Sci 2017; 79: 41–46.
Google Scholar | Crossref | Medline42. Acierno, MJ, Brown, S, Coleman, AE, et al. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J Vet Intern Med 2018; 32: 1803–1822.
Google Scholar | Crossref | Medline43. Lubas, A, Ryczek, R, Kade, G, et al. Renal perfusion index reflects cardiac systolic. Med Sci Monit 2015; 21: 1089–1096.
Google Scholar | Crossref | Medline44. Di Nicolò, P, Granata, A. Renal resistive index: not only kidney. Clin Exp Nephrol 2017; 21: 359–366.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif